open-cd框架调试记录

1.前言

源于论文Changer: Feature Interaction Is What You Need forChange Detection

源码位置:open-cd/README.md at main · likyoo/open-cd (github.com)

同样是基于MMSegmentation框架的代码,不符合本人编程习惯所以一直也没有研究这东西,近期打算对这类框架进行复现,看一下他们的精度。

 这类框架的特点就是比较难分解,调用比较抽象,好在论文作者在readme里面给出了相关的一些东西,但是总体来说还是比较麻烦,可读性比较差。

2.代码运行尝试

对于库的安装请严格按照作者给出的版本号,否则代码运行会出现调用错误,如:ImportError: cannot import name 'LayerNorm2d' from 'mmseg.models.utils' site:github.com,参照给出的版本:

如果依然存在报错,使用  pip list 查看安装库的版本情况,卸载版本号不符合的,重新进行安装。有一点要注意的是,当版本对应,运行代码依然出现引用错误,显示在mmsegmentation框架下引用,实际上需要  pip install  'name'  ,很奇怪。

在这个位置查看数据存放格式

在训练过程中按照下面格式放好数据就可以开始训练:

 运行语句

cd open-cd

pip install -v -e .

python tools/train.py configs/changer/changer_ex_r18_512x512_40k_levircd.py --work-dir ./changer_r18_levir_workdir

注意: pip install -v -e .必须运行,否则会出现nomodel报错。

配置文件打印

from mmengine.config import Config

cfg = Config.fromfile('changeformer_mit-b0_256x256_40k_levircd.py')
print(cfg.optim_wrapper)

3.进行拆解

看了一下前辈的视频:4.config移植_哔哩哔哩_bilibili

发现能够使用pycharm的命令行配置,来对代码进行debug

但是在配置过程中依然存在问题

 配置完命令行,会报错,并且一直没找到解决办法

train.py: error: unrecognized arguments: python tools/train.py configs/changer/changer_ex_r18_512x512_40k_levircd.py--work-dir ./changer_r18_levir_workdir

这里建议直接改args里面的内容,可以解决此类问题(但是需要注意,这里相对路径必须写完整

 由于运行方式不一样,在运行时会出现路径错误,这里需要调试修改

踩坑

这个位置的模块不要安装,执行安装命令的时候会卸载掉你的cuuda,损坏环境(如果执意安装需要备份环境) 

 

相关链接

对于一些比较奇怪的问题,在git上面有不少回复,可以参考看一下:

How to solve this problem in the training model - · Issue #1637 · open-mmlab/mmsegmentation (github.com)

 顺带标注一下友情链接:

1.欢迎来到MMSegmentation的文档!— MMSegmentation 1.2.2 文档icon-default.png?t=N7T8https://mmsegmentation.readthedocs.io/en/main/

2.open-mmlab/mmengine: OpenMMLab Foundational Library for Training Deep Learning Models (github.com)icon-default.png?t=N7T8https://github.com/open-mmlab/mmengine

3.mmsegmentation/README_zh-CN.md at master · open-mmlab/mmsegmentation (github.com)icon-default.png?t=N7T8https://github.com/open-mmlab/mmsegmentation/blob/master/README_zh-CN.md

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yokon_D

您的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值