【YOLO系列】YOLO算法改进史——已更新至YOLOv12



前言

YOLO(You Only Look Once)是一种革命性的目标检测算法,以其快速和高效的性能而闻名。自2015年YOLOv1的首次推出以来,YOLO系列已经经历了多次迭代,每一次迭代都在速度、准确性和计算效率方面做出了显著的贡献。

版本号 年份 主要贡献与特点
YOLOv1 2015 实时端到端物体检测,将检测视为回归问题,单次网络评估预测位置和类别
YOLOv2 2016 引入批量归一化,高分辨率分类器,全卷积网络,能检测超过9000个类别
YOLOv3 2018 使用更深的Darknet-53网络,引入特征金字塔网络提高多尺度目标检测能力
YOLOv4 2020 结合CSPNet、PANet、SAM等技术,提高特征提取和检测效率
YOLOv5 2020 使用Pytorch框架,不同大小模型版本适应不同环境,易用性和性能显著改进
YOLOv6 2021 多种不同尺寸模型适应工业应用,继续在YOLO系列基础上改进
YOLOv7 2022 架构变化和一系列免费包提高准确率,保持实时性
YOLOv8 2023 新功能和改进,包括新的骨干网络、Anchor-Free检测头和新损失函数,提升性能和灵活性
YOLOv9 2023 引入可编程梯度信息(PGI)和基于梯度路径规划的通用高效层聚合网络(GELAN)架构
YOLOv10 2024 通过消除非最大抑制(NMS-Free)和优化各种模型组件,实现了最先进的性能。
YOLO11 2024 采用C3K2模块更利于聚合特征,在注意力方面使用C2PSA模块的多头注意力机制提取全局特征
YOLOv12 2025 提出了以注意力为中心的实时目标检测框架,打破了传统CNN在YOLO系列中的主导地位。

YOLOv1

  • 核心思想:
    将目标检测任务视为一个回归问题,直接在整幅图像上进行边界框的预测和类别分类,一次性输出目标的位置和类别信息。
  • 网络结构: 输入图像被 resize 到 448x448,经过一系列卷积层和全连接层处理。最后一个全连接层输出一个 7x7x30 的张量,其中 7x7 表示将图像划分为 7x7 的网格,每个网格对应 30 维的预测信息,包括 2 个边界框的位置(4 个值)、置信度(2 个值)和 20 类对象分类的概率。
  • 优点: 检测速度快,能够在一张图像上同时预测多个目标的位置和类别;对背景的误检率相对较低,因为是基于整幅图像进行检测,能利用上下文信息。
  • 缺点: 定位精度不够高,尤其是对于小目标的检测效果较差;每个网格只能预测一组类别概率,对于多个目标位于同一网格的情况处理能力有限;边界框的预测不够准确,召回率相对较低。

YOLOv2

  • 改进之处:
    1. 输入尺度: 支持更高分辨率的输入,提高了对小目标的检测能力。
    2. 网络层改进:
      • 在卷积和激活函数之间添加批量归一化(Batch Normalization),加快训练速度并提高准确率,减少了对 Dropout 层的依赖。
      • 借鉴 ResNet 的思想,进行特征图的拼接操作,融合不同层次的特征信息,增强了模型对多尺度特征的表达能力。
    3. 输出结果处理:
      • 引入先验框(Anchor Boxes)的概念,每个网格预先定义多个不同尺寸和比例的先验框,提高了对不同形状目标的适应性,虽然准确率略有下降,但召回率提升明显。
      • 对边界框的预测值进行编码(Encode)处理,将预测值的范围控
YOLOv1 (You Only Look Once)是一种早期流行的实时目标检测算法,它的原始版本并没有引入传统的分类和定位损失函数,而是直接预测边界框和置信度。然而,后续的YOLO模型(如YOLOv3)确实对损失函数进行了优化: 1. **更复杂的损失函数**:YOLOv3采用了多尺度特征图和中心点回归,因此损失函数包含了一个组合的损失,包括了坐标损失(通常采用Smooth L1 Loss,用于处理小目标和大目标的差异)、类别概率损失(交叉熵Loss)以及置信度损失。 - **坐标损失(Regression Loss)**:对于每个预测的边界框,不仅计算IoU(Intersection over Union)作为二进制分类标签,还预测了四个位置偏移量,这个部分通常采用Smooth L1 Loss。 - **分类损失(Classification Loss)**:每个网格单元对应于一组预定义类别,网络需要预测属于每个类别的概率,这通常通过交叉熵损失衡量。 - **置信度损失(Objectness Loss)**:判断物体是否存在,即使在没有物体的情况下也给出置信度预测,这部分一般也是二元分类损失。 2. **正负样本平衡**:为了训练过程更稳定,YOLO会设置一定的阈值,只有IOU高于阈值的预测视为正样本,其余视为负样本,避免过拟合弱边框。 3. **忽略低置信度预测**:在训练过程中,可以设置忽略那些置信度低于阈值的预测结果,只关注高置信度的对象,提高检测性能。 这些改进使得YOLO系列模型能够更准确地定位目标,并提高了整体性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有品位的小丑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值