文章目录
前言
官方链接:https://github.com/CVHub520/X-AnyLabeling
源代码:https://github.com/ultralytics/ultralytics
YOLO Vision 2024(YV24)大会上,Ultralytics 正式发布了YOLO家族的最新成员——YOLO11。YOLO11不仅仅是一次简单的升级,它代表了计算机视觉领域的一次质的飞跃。Ultralytics的创始人兼CEO Glenn Jocher表示:“YOLO11的设计旨在为现实世界的应用提供强大而实用的解决方案。它提高的效率和准确性使其成为一个可以适应各行各业独特挑战的强大工具。”
一、主要新增特性
- 高精度目标检测:更准确的边界框绘制,适用于监控、自动驾驶和零售分析等领域。
- 像素级实例分割:精确分离图像中的个体对象,为医疗影像和工业缺陷检测提供有力支持。
- 先进的图像分类:轻松对整张图片进行分类,极大便利电子商务产品分类和野生动物监测等应用。
- 精确姿态估计:准确检测关键点,为健身追踪、运动分析和医疗保健带来新可能。
- 定向目标检测(OBB):精准定位旋转物体,尤其适用于航空影像、机器人技术和仓库自动化。
- 实时目标跟踪:跨帧监控和追踪移动物体,为众多实时应用提供关键支持。
二、主要改进
相比较于YOLOv8模型,其将CF2模块改成C3K2,同时在SPPF模块后面添加了一个C2PSA模块——特征增强模块,且将YOLOv10的head思想引入到YOLO11的head中,使用深度可分离的方法,减少冗余计算,提高效率。
2.1 C3K2网络结构
C3K2模块其实就是C2F模块转变出来的,它代码中有一个设置,就是当c3k这个参数为FALSE的时候,C3K2模块就是C2F模块,也就是说它的Bottleneck是普通的Bottleneck&