原文及代码链接:ECCV Hourglass Attention Network for Image Inpainting. [code]
本文创新点:
- 提出了一种新的基于注意力的网络-沙漏注意网络(HAN) ;
- 提出了拉普拉斯注意力,它在相似度计算中引入了一个新的距离先验,并以拉普拉斯分布的形式表示空间位置的影响。
网络结构
网络由三个部分构成:CNN 编码器、CNN 解码器和沙漏注意力模块。沙漏注意力模块包含特征编码和特征解码两个过程,编码过程和解码过程由多层次的注意力块完成。在编码过程中patch的大小分别为1,2,4,8。沙漏注意力模块可以有效地利用多尺度的特征信息,同时降低了计算的复杂度。
每一个注意力块包含两个部分:拉普拉斯注意力层和前馈网络。
作者在softmax后引入了拉普拉斯先验以反映特征之间距离对注意力得分的影响。拉普拉斯先验:假设patch qi和kj的空间坐标ci和cj分别为(xi,yi)和(xj,yj),对于每个qi服从二维空间的“各向同性”的拉普拉斯分布)
,其中
,I为单位矩阵。

其中,
,|w|为可学习的参数。

损失函数
损失主要由重构损失(L1)、感知损失、风格损失和对抗性损失四个损失构成。

文章提出了一种新的沙漏注意力网络(HAN)用于图像修复,该网络结合了CNN编码器和解码器以及沙漏注意力模块。沙漏模块通过多层次注意力块处理多尺度特征,并利用拉普拉斯注意力层引入空间位置的先验知识。损失函数包括L1、感知、风格和对抗性损失,以全面优化修复效果。

2万+

被折叠的 条评论
为什么被折叠?



