论文阅读KAN: Kolmogorov–Arnold Networks

学习了最近大热的KAN网络

论文地址:https://arxiv.org/pdf/2404.19756

按我个人读论文的习惯总结了如下几点:

1,背景:

1)灵感来源:于Kolmogorov-Arnold表示定理,也就是多变量连续函数可以表示为一变量连续函数的有限组合。

2)MLPs的缺点

        (I)固定激活函数:MLPs在每个神经元上使用固定的激活函数,这限制了模型适应复杂数据模式的能力。

        (II)可解释性差

        (III)维度灾难

        (IV)使用ReLU激活函数时,对于逼近指数函数和正弦函数等函数时效率非常低

        (V)在Transformer中,MLPs消耗了几乎所有的非嵌入参数

3)与MLPs相比,KANs在网络的边上使用可学习的激活函数,而不是节点上的固定激活函数。

2,KAN的技术细节

1)结构

KANs中的激活函数由B样条(B-splines)定义,这是一种分段定义的多项式,用于生成平滑曲线。每个激活函数都是一个B样条曲线,其系数是可学习的参数。这种参数化方法不仅提供了高度的灵活性,还允许模型在训练过程中自动调整激活函数的形状,以更好地适应数据。

(图0.1 MLPs和KANs的对比)

左侧:流经网络的激活函数的表示。右侧:激活函数被参数化为B样条曲线(B-spline),允许在粗粒度和细粒度网格之间进行切换。

文章提出的KAN的基础模型结构:

其计算图完全由如下方程指定:

并在图0.1(b)中进行了说明(输入维度n=2),它呈现为一个两层神经网络,激活函数位于边上而非节点上(在节点上进行简单的求和),中间层的宽度为2n + 1。

2)训练

KANs可以使用标准的反向传播算法进行训练,因为所有操作都是可微分的。在训练过程中,模型的参数(包括B样条的系数)会通过梯度下降算法进行更新。论文中提到了使用LBFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)优化器进行训练,这是一种适用于非线性优化问题的算法。

3,KANs的优点:

1)准确性:在小规模的AI+Science任务中,KANs显示出比MLPs更高的准确性。

2)可解释性:KANs的架构允许更直观的可视化和与人类的交互,有助于提高模型的可解释性。

3)神经扩展法则:KANs拥有比MLPs更快的神经扩展法则,意味着在模型参数增加时,测试误差下降得更快。

4)避免灾难性遗忘:KANs利用样条的局部特性来避免在持续学习中出现的灾难性遗忘问题。

4,KANs的缺点和暂时的不足:

1)训练速度:KANs相比于MLPs训练速度较慢。论文指出,KANs的训练通常比MLPs慢10倍。

2)理论基础尚不完善:目前只适用于特定结构的KAN,对于构建更深更宽的网络还没有理论支持。

3)算法效率:论文中提到,KANs在算法效率方面存在一些问题,例如,不同的激活函数不能利用批处理计算,这限制了计算效率。

4)超参数依赖性:KANs的性能可能依赖于特定的超参数选择,例如,论文中提到了熵惩罚和正则化强度对网络稀疏性的影响。

5)高维时如何实现:目前尚不清楚我们的方法是否能推广到更实际的场景中,尤其是当维度较高时,如何定义“局部性”尚不清楚。

6)泛化能力尚存疑:尽管KANs在理论上具有避免维度灾难的潜力,但论文中也提到了需要进一步研究KANs在不同数据集上的鲁棒性,以及它们与其他深度学习架构的兼容性。

7)复杂性与可解释性:论文中提到,虽然KANs提供了更高的可解释性,但是在某些情况下,例如当激活函数的权重矩阵存在时,可解释性可能会受到影响。

8)持续学习:尽管KANs在避免灾难性遗忘方面表现出潜力,但论文中也指出了需要进一步研究KANs在更现实的场景中的持续学习能力。

9)应用范围:论文中提出KANs在小规模AI+Science任务中表现出色,但对于更大规模或更复杂的任务,KANs的表现和适用性还需要进一步的实证研究。

10)计算资源:论文中提到,尽管KANs在参数数量上可能比MLPs更高效,但它们在实际应用中可能需要更多的计算资源,尤其是在处理大规模数据集时。

作为一个新模型,目前的不足多一点也很正常,重要的是其潜力。如果能够把KANs推广到目前MLPs的所有应用场景,那可以填的坑可以写的论文就太多了。

5,文中提到的应用场景:

1)小规模AI+Science任务:KANs在小规模的人工智能与科学结合的任务中表现出色,尤其是在准确性和可解释性方面。

2)函数拟合:KANs在数学和物理学的特定函数拟合任务中,展示了比传统MLPs更高的准确性。

3)数学中的结理论(Knot Theory):KANs被用于探索和重新发现结理论中的数学关系,这涉及到了拓扑学的应用。

4)物理学中的Anderson局域化:KANs被应用于分析和理解电子在量子系统中的局域化现象,这涉及到了凝聚态物理学。

5)解决偏微分方程(PDEs):KANs在解决特定类型的偏微分方程时表现出了潜力,特别是在物理信息神经网络(Physics-Informed Neural Networks, PINNs)的框架内。

6)图像表示学习:虽然论文中没有直接提到图像处理,但KANs理论上可以应用于图像的隐式表示,例如通过学习图像的隐式函数来进行图像压缩或生成。

7)持续学习:KANs在持续学习场景中展现出避免灾难性遗忘的能力,这对于开发能够随时间累积知识的模型非常重要。

8)科学发现:KANs由于其可解释性,被提出作为帮助科学家(重新)发现数学和物理定律的工具。

9)通用函数逼近:论文中提到KANs理论上具有通用逼近性质,能够逼近多变量连续函数,这意味着它们可以应用于广泛的函数逼近任务。

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝海渔夫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值