人工智能赋能产业升级:AI在智能制造、智慧城市等领域的应用实践

人工智能赋能产业升级:AI在智能制造、智慧城市等领域的应用实践

近年来,人工智能(AI)技术的快速发展为各行各业带来了深刻的变革。无论是制造业、城市管理,还是交通、医疗等领域,AI技术都展现出了强大的应用潜力。本文将探讨AI技术在智能制造、智慧城市等领域的具体应用实践,通过案例和代码示例,帮助读者更好地理解AI技术如何推动产业升级。

一、AI赋能智能制造

智能制造是AI技术应用的重要领域之一。通过AI技术,制造业可以实现生产过程的自动化、智能化和高效化,从而降低成本、提高产品质量。

1.1 预测性维护(Predictive Maintenance)

预测性维护是智能制造中的一个重要应用场景。通过对设备运行数据的分析,AI模型可以预测设备的故障时间,从而避免生产中断。

1.1.1 案例:设备故障预测

以下是一个基于LSTM(长短期记忆网络)的设备故障预测模型代码示例:

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.optim as optim

# 加载数据
data = pd.read_csv('equipment_data.csv')

# 数据预处理
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data[['temperature', 'vibration', 'pressure']])

# 分割训练集和测试集
train_data, test_data = train_test_split(data_scaled, test_size=0.2, random_state=42)

# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])
        return out

# 初始化模型、优化器和损失函数
input_size = 3
hidden_size = 20
output_size = 1
model = LSTMModel(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
for epoch in range(100):
    for batch in train_data:
        inputs = batch[:, :-1]
        labels = batch[:, -1]
        inputs = torch.FloatTensor(inputs)
        labels = torch.FloatTensor(labels)
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch+1}, Loss: {loss.item()}')

# 使用模型预测
with torch.no_grad():
    predictions = model(torch.FloatTensor(test_data))
    print(predictions.numpy())

1.2 质量检测(Quality Inspection)

AI技术在质量检测中的应用主要体现在对产品表面缺陷的自动识别。通过计算机视觉技术,AI模型可以快速识别出产品中的缺陷,从而提高检测效率。

1.2.1 案例:基于YOLO的缺陷检测

以下是一个基于YOLO(You Only Look Once)模型的缺陷检测代码示例:

import cv2
import numpy as np

# 加载YOLO模型
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
    classes = [line.strip() for line in f.readlines()]

# 加载图像
img = cv2.imread("product_image.jpg")
height, width = img.shape[:2]

# 获取YOLO层
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]

# 前向传播
blob = cv2.dnn.blobFromImage(img, 1/255, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)

# 检测缺陷
class_ids = []
confidences = []
boxes = []
for out in outs:
    for detection in out:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            # 检测到缺陷
            class_ids.append(class_id)
            confidences.append(float(confidence))
            # 获取边界框坐标
            center_x = int(detection[0] * width)
            center_y = int(detection[1] * height)
            w = int(detection[2] * width)
            h = int(detection[3] * height)
            x = center_x - w // 2
            y = center_y - h // 2
            boxes.append([x, y, w, h])

# 绘制边界框
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
if len(indices) > 0:
    for i in indices:
        i = i[0]
        box = boxes[i]
        x, y, w, h = box[0], box[1], box[2], box[3]
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(img, f'Defect {class_ids[i]}', (x, y + 30), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 255), 2)

# 显示图像
cv2.imshow("Defect Detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.3 生产流程优化(Process Optimization)

AI技术可以通过分析生产数据,优化生产流程,提高生产效率。例如,通过强化学习(Reinforcement Learning)算法,AI可以实时调整生产参数,确保生产过程的最优化。

1.3.1 案例:基于强化学习的生产优化

以下是一个基于强化学习的生产优化代码示例:

import gym
from gym import spaces
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim

# 定义环境
class ProductionEnvironment(gym.Env):
    def __init__(self):
        self.observation_space = spaces.Box(low=0, high=100, shape=(3,), dtype=np.float32)
        self.action_space = spaces.Box(low=0, high=100, shape=(2,), dtype=np.float32)
        self.state = np.random.rand(3)
    
    def reset(self):
        self.state = np.random.rand(3)
        return self.state
    
    def step(self, action):
        reward = self.calculate_reward(self.state, action)
        self.state = self.update_state(self.state, action)
        done = False
        info = {}
        return self.state, reward, done, info
    
    def calculate_reward(self, state, action):
        # 根据状态和动作计算奖励
        return np.sum(state) + np.sum(action)
    
    def update_state(self, state, action):
        # 根据状态和动作更新状态
        return state + action

# 初始化环境
env = ProductionEnvironment()

# 定义策略网络
class PolicyNetwork(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(PolicyNetwork, self).__init__()
        self.fc1 = nn.Linear(state_dim, 128)
        self.fc2 = nn.Linear(128, 128)
        self.fc3 = nn.Linear(128, action_dim)
    
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = torch.tanh(self.fc3(x))
        return x

# 初始化模型、优化器和损失函数
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
model = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
for episode in range(1000):
    state = env.reset()
    total_reward = 0
    for step in range(100):
        state = torch.FloatTensor(state)
        action = model(state)
        action = action.detach().numpy()
        next_state, reward, done, info = env.step(action)
        total_reward += reward
        optimizer.zero_grad()
        loss = -total_reward
        loss.backward()
        optimizer.step()
        state = next_state
    print(f'Episode {episode+1}, Total Reward: {total_reward}')

二、AI赋能智慧城市

智慧城市是AI技术应用的另一个重要领域。通过AI技术,城市管理可以实现智能化、数据驱动化,从而提高城市运行效率,改善居民生活质量。

2.1 智能交通管理(Intelligent Traffic Management)

智能交通管理是智慧城市的核心应用之一。通过实时分析交通数据,AI技术可以优化交通信号灯控制,减少交通拥堵。

2.1.1 案例:基于深度学习的交通流量预测

以下是一个基于深度学习的交通流量预测代码示例:

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.optim as optim

# 加载数据
data = pd.read_csv('traffic_data.csv')

# 数据预处理
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data[['hour', 'day', 'month', 'traffic_flow']])

# 分割训练集和测试集
train_data, test_data = train_test_split(data_scaled, test_size=0.2, random_state=42)

# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])
        return out

# 初始化模型、优化器和损失函数
input_size = 4
hidden_size = 20
output_size = 1
model = LSTMModel(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
for epoch in range(100):
    for batch in train_data:
        inputs = batch[:, :-1]
        labels = batch[:, -1]
        inputs = torch.FloatTensor(inputs)
        labels = torch.FloatTensor(labels)
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch+1}, Loss: {loss.item()}')

# 使用模型预测
with torch.no_grad():
    predictions = model(torch.FloatTensor(test_data))
    print(predictions.numpy())

2.2 环境监测(Environmental Monitoring)

AI技术在环境监测中的应用主要体现在空气质量预测和污染源追踪。通过分析传感器数据,AI模型可以实时预测空气质量指数,从而帮助政府制定环保政策。

2.2.1 案例:基于机器学习的空气质量预测

以下是一个基于机器学习的空气质量预测代码示例:

import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 加载数据
data = pd.read_csv('air_quality_data.csv')

# 定义特征和目标
X = data[['PM2.5', 'PM10', 'SO2', 'NO2', 'CO', 'O3']]
y = data['AQI']

# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# 模型评估
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'MSE: {mse}')

# 使用模型预测
new_data = pd.DataFrame({'PM2.5': [10], 'PM10': [20], 'SO2': [5], 'NO2': [10], 'CO': [1], 'O3': [50]})
predicted_aqi = model.predict(new_data)
print(f'Predicted AQI: {predicted_aqi[0]}')

2.3 智能电网(Smart Grid)

智能电网是智慧城市的重要组成部分。通过AI技术,智能电网可以实现电力需求的实时预测和优化分配,从而提高能源利用效率。

2.3.1 案例:基于AI的电力需求预测

以下是一个基于AI的电力需求预测代码示例:

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.optim as optim

# 加载数据
data = pd.read_csv('electricity_demand.csv')

# 数据预处理
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data[['temperature', 'humidity', 'demand']])

# 分割训练集和测试集
train_data, test_data = train_test_split(data_scaled, test_size=0.2, random_state=42)

# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])
        return out

# 初始化模型、优化器和损失函数
input_size = 3
hidden_size = 20
output_size = 1
model = LSTMModel(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
for epoch in range(100):
    for batch in train_data:
        inputs = batch[:, :-1]
        labels = batch[:, -1]
        inputs = torch.FloatTensor(inputs)
        labels = torch.FloatTensor(labels)
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch+1}, Loss: {loss.item()}')

# 使用模型预测
with torch.no_grad():
    predictions = model(torch.FloatTensor(test_data))
    print(predictions.numpy())

三、AI在其他领域的应用

除了智能制造和智慧城市,AI技术还在许多其他领域展现了强大的应用潜力。

3.1 医疗健康(Healthcare)

AI技术在医疗健康领域的应用包括疾病诊断、药物研发、个性化治疗。通过分析医疗数据,AI模型可以帮助医生更准确地诊断疾病,缩短诊断时间。

3.1.1 案例:基于深度学习的医疗影像分析

以下是一个基于深度学习的医疗影像分析代码示例:

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import cv2

# 定义数据集
class MedicalImageDataset(Dataset):
    def __init__(self, image_paths, labels, transform=None):
        self.image_paths = image_paths
        self.labels = labels
        self.transform = transform
    
    def __len__(self):
        return len(self.image_paths)
    
    def __getitem__(self, idx):
        image = cv2.imread(self.image_paths[idx])
        if self.transform:
            image = self.transform(image)
        label = self.labels[idx]
        return image, label

# 定义模型
class MedicalImageClassifier(nn.Module):
    def __init__(self):
        super(MedicalImageClassifier, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    
    def forward(self, x):
        x = self.pool(torch.relu(self.conv1(x)))
        x = self.pool(torch.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型、优化器和损失函数
model = MedicalImageClassifier()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001)

# 加载数据集
image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg']
labels = [0, 1, 0]
dataset = MedicalImageDataset(image_paths, labels)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

# 训练模型
for epoch in range(10):
    for images, labels in dataloader:
        outputs = model(images)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch+1}, Loss: {loss.item()}')

3.2 农业(Agriculture)

AI技术在农业领域的应用包括精准农业、作物病虫害检测、智能灌溉等。通过分析环境数据和遥感数据,AI模型可以帮助农民提高作物产量,降低农业成本。

3.2.1 案例:基于计算机视觉的作物病虫害检测

以下是一个基于计算机视觉的作物病虫害检测代码示例:

import cv2
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# 加载模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(2, activation='softmax'))

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 加载数据并训练模型
train_dir = 'train/'
validation_dir = 'validation/'

# 数据增强和预处理
from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255,
                                    shear_range=0.2,
                                    zoom_range=0.2,
                                    horizontal_flip=True)

validation_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(train_dir,
                                                    target_size=(256, 256),
                                                    batch_size=32,
                                                    class_mode='categorical')

validation_generator = validation_datagen.flow_from_directory(validation_dir,
                                                            target_size=(256, 256),
                                                            batch_size=32,
                                                            class_mode='categorical')

# 训练模型
history = model.fit(train_generator,
                    steps_per_epoch=train_generator.samples // 32,
                    epochs=10,
                    validation_data=validation_generator,
                    validation_steps=validation_generator.samples // 32)

# 使用模型预测
test_image = cv2.imread('test_image.jpg')
test_image = cv2.resize(test_image, (256, 256))
test_image = test_image / 255.0
 prediction = model.predict(np.expand_dims(test_image, axis=0))
 print(f'Prediction: {prediction}')

四、总结与展望

人工智能技术的快速发展为各行各业带来了深刻的变革。无论是智能制造、智慧城市,还是医疗、农业等领域,AI技术都展现出了强大的应用潜力。通过本文的案例和代码示例,读者可以更好地理解AI技术如何推动产业升级,提升生产效率,改善生活质量。

然而,AI技术的应用也面临着一些挑战,如数据隐私、模型解释性、伦理等问题。未来,随着技术的不断进步,AI有望在更多领域实现突破,推动人类社会的进步。

课程介绍 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图 人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文领域进行大胆尝试。 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 ? 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 ? 我们该如何在心理上将人机器摆正确的位置 我们该如何在心理上将人机器摆正确的位置 我们该如何在心理上将人机器摆正确的位置 我们该如何在心理上将人机器摆正确的位置 我们该如何在心理上将人机器摆正确的位置 ? 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 AI 取代?企业应该如 取代?企业应该如 何升 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧惧怕人工智能时代的到来,所要做应当是尽早认清 AI 与人类 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 通过本课程 拓展一下思维,期待收获 拓展一下思维,期待收获 拓展一下思维,期待收获 拓展一下思维,期待收获 能多一些 。包含:机器 包含:机器 包含:机器 学习 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 各领域应用知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长风清留扬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值