线性代数:n维向量

1.线性表示

给定向量组 A : a 1 , a 2 , ⋯   , a m A:a_{1},a_{2},\cdots ,a_{m} A:a1,a2,,am和向量 b b b,如果存在一组数 λ 1 , λ 2 , ⋯   , λ m \lambda _{1},\lambda _{2},\cdots ,\lambda _{m} λ1,λ2,,λm,使 b = λ 1 a 1 + λ 2 a 2 + ⋯ + λ m a m b=\lambda _{1}a_{1}+\lambda _{2}a_{2}+\cdots +\lambda _{m}a_{m} b=λ1a1+λ2a2++λmam,则称向量 b b b可由向量组 A A A线性表示。
向量组 b b b可由向量组 A A A线性表示,也就是方程组
x 1 a 1 + x 2 a 2 + ⋯ + x m a m = b x_{1}a_{1}+x_{2}a_{2}+\cdots +x_{m}a_{m}=b x1a1+x2a2++xmam=b有非零解。
推论: 若向量组 b b b可由向量组 A A A线性表示,则
R ( a 1 , a 2 , ⋯   , a m , b ) = R ( a 1 , a 2 , ⋯   , a m ) R(a_{1},a_{2},\cdots ,a_{m},b)=R(a_{1},a_{2},\cdots ,a_{m}) R(a1,a2,,am,b)=R(a1,a2,,am)

2.向量组的线性相关性

1.给定向量组 A : a 1 , a 2 , ⋯   , a m A:a_{1},a_{2},\cdots ,a_{m} A:a1,a2,,am,如果存在不全为零的数 k 1 , k 2 , ⋯   , k m k_{1},k_{2},\cdots ,k_{m} k1,k2,,km,使 k 1 a 1 + k 2 a 2 + ⋯ + k m a m = 0 k_{1}a_{1}+k_{2}a_{2}+\cdots +k_{m}a_{m}=0 k1a1+k2a2++kmam=0,则称向量组 A A A是线性相关的,否则称线性无关。
推论: 向量组 A : a 1 , a 2 , ⋯   , a m A:a_{1},a_{2},\cdots ,a_{m} A:a1,a2,,am构成矩阵 A = ( a 1 , a 2 , ⋯   , a m ) A=(a_{1},a_{2},\cdots ,a_{m}) A=(a1,a2,,am),向量组 A A A线性相关就是齐次线性方程组 x 1 a 1 + x 2 a 2 + ⋯ + x m a m = 0 x_{1}a_{1}+x_{2}a_{2}+\cdots +x_{m}a_{m}=0 x1a1+x2a2++xmam=0,即 A x = 0 Ax=0 Ax=0有非零解。
2.向量组 A : a 1 , a 2 , ⋯   , a m ( m ⩾ 2 ) A:a_{1},a_{2},\cdots ,a_{m}(m\geqslant 2) Aa1,a2,,am(m2)线性线性相关的充分必要条件是在向量组 A A A中至少有一个向量可由其余 m − 1 m-1 m1个向量线性表示。
3.若向量组 A : a 1 , a 2 , ⋯   , a r A:a_{1},a_{2},\cdots ,a_{r} A:a1,a2,,ar线性相关,则向量组 B : a 1 , a 2 , ⋯   , a r , a r + 1 B:a_{1},a_{2},\cdots ,a_{r},a_{r+1} B:a1,a2,,ar,ar+1也线性相关。换言之,若向量组 B B B线性无关,则向量组 A A A也线性无关。
总结:部分相关,整体必相关;整体无关,部分必无关
4.设向量组 A : a 1 , a 2 , ⋯   , a r A:a_{1},a_{2},\cdots ,a_{r} A:a1,a2,,ar线性无关,而向量组 B : a 1 , a 2 , ⋯   , a r , b B:a_{1},a_{2},\cdots ,a_{r},b B:a1,a2,,ar,b线性相关,则向量 b b b可由向量组 A A A唯一地线性表示。
5. n n n维向量组 A : a 1 , a 2 , ⋯   , a r A:a_{1},a_{2},\cdots ,a_{r} A:a1,a2,,ar线性相关 ⇔ \Leftrightarrow R ( A ) < r R(A)<r R(A)<r.换言之
n n n维向量组 A : a 1 , a 2 , ⋯   , a r A:a_{1},a_{2},\cdots ,a_{r} A:a1,a2,,ar线性无关 ⇔ \Leftrightarrow R ( A ) = r R(A)=r R(A)=r.
6.若向量组 a 1 , a 2 , ⋯   , a r a_{1},a_{2},\cdots ,a_{r} a1,a2,,ar线性相关,向量组 b 1 , b 2 , ⋯   , b s b_{1},b_{2},\cdots ,b_{s} b1,b2,,bs ( s ⩾ r ) (s\geqslant r) (sr)可由向量组 a 1 , a 2 , ⋯   , a r a_{1},a_{2},\cdots ,a_{r} a1,a2,,ar线性表示,则向量组 b 1 , b 2 , ⋯   , b s b_{1},b_{2},\cdots ,b_{s} b1,b2,,bs也线性相关。
推论: n + 1 n+1 n+1 n n n维向量一定线性相关。

3.向量组等价

设有两个向量组 A : a 1 , a 2 , ⋯   , a m A:a_{1},a_{2},\cdots ,a_{m} A:a1,a2,,am B : b 1 , b 2 , ⋯   , b s B:b_{1},b_{2},\cdots ,b_{s} B:b1,b2,,bs。若向量组 A A A中的每个向量都能由向量组 B B B线性表示,则称向量组 A A A能由向量组 B B B线性表示。若两个向量组可以相互线性表示,则称这两个向量组等价,记住 A ≃ B A\simeq B AB
推论: 向量组 A : a 1 , a 2 , ⋯   , a m A:a_{1},a_{2},\cdots ,a_{m} A:a1,a2,,am与向量组 B : b 1 , b 2 , ⋯   , b s B:b_{1},b_{2},\cdots ,b_{s} B:b1,b2,,bs等价的充分必要条件是
r ( A ) = r ( B ) = r ( A , B ) r(A)=r(B)=r(A,B) r(A)=r(B)=r(A,B)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

散一世繁华,颠半世琉璃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值