线性代数(四):线性方程组

线性方程组

定义4.1:含 m m m个方程, n n n个未知量的线性方程组的一般形式为:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m ⟺ A m × n X ⃗ n = b ⃗ n ⟺ [ A ⃗ 1 , A ⃗ 2 , … , A ⃗ n ] [ x 1 x 2 ⋮ x n ] = b ⃗ \begin{cases} a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\ \dots\\ a_{m1}x_1+a_{m2}x_2+\dots+a_{mn}x_n=b_m\end{cases}\Longleftrightarrow \bold{A_{m\times n}\vec{X}_n}=\vec{b}_n\Longleftrightarrow[\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n]\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}=\vec{b} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bmAm×nX n=b n[A 1,A 2,,A n] x1x2xn =b
将其称为 m × n m\times n m×n型线性方程组 A m × n \bold{A_{m\times n}} Am×n称作方程组的 系数矩阵, [ A ∣ b ⃗ ] [\bold{A| \vec{b}]} [A∣b ]称作其 增广矩阵

定理4.1
( 1 ) m × n (1)m\times n 1m×n型线性方程组 A X ⃗ = b ⃗ \bold{A\vec{X}=\vec{b}} AX =b 有解 ⟺ r ( A ) = r ( [ A ∣ b ⃗ ] ) \quad\Longleftrightarrow \quad r(\bold A)=r([\bold A |\vec{b}]) r(A)=r([Ab ])
( 2 ) m × n (2)m\times n 2m×n型线性方程组 A X ⃗ = b ⃗ \bold{A\vec{X}=\vec{b}} AX =b 有唯一解 ⟺ r ( A ) = r ( [ A ∣ b ⃗ ] ) = n \quad\Longleftrightarrow \quad r(\bold A)=r([\bold A |\vec{b}])=n r(A)=r([Ab ])=n

证明(1)

A x ⃗ = b ⃗ A\vec{x}=\vec{b} Ax =b 有解,则 b ⃗ \vec{b} b A A A列向量 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\} {A 1,A 2,,A n}的线性组合,则:
{ A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } 与 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n , b ⃗ } 等价 ⟹ r ( { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n , b ⃗ } ) = r ( { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } ) \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\}与\{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n,\vec{b}\}等价\Longrightarrow r(\{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n,\vec{b}\})=r(\{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\}) {A 1,A 2,,A n}{A 1,A 2,,A nb }等价r({A 1,A 2,,A nb })=r({A 1,A 2,,A n})
r ( A ) = r ( [ A ∣ b ⃗ ] ) r(\bold A)=r(\bold{[A|\vec{b}]}) r(A)=r([A∣b ])

反过来,若 r ( A ) = r ( [ A ∣ b ⃗ ] ) r(\bold A)=r(\bold{[A|\vec{b}]}) r(A)=r([A∣b ]),则
{ A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } 的极大线性无关组是 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n , b ⃗ } 的极大线性无关组 \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\}的极大线性无关组是\{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n,\vec{b}\}的极大线性无关组 {A 1,A 2,,A n}的极大线性无关组是{A 1,A 2,,A nb }的极大线性无关组
那么, b ⃗ \vec{b} b 可由 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\} {A 1,A 2,,A n}线性表示,即方程组有解。

证明(2)

A x ⃗ = b ⃗ A\vec{x}=\vec{b} Ax =b 有唯一解,则唯一存在 { x 1 , … , x n } \{x_1,\dots,x_n\} {x1,,xn}使得 x 1 A ⃗ 1 + x 2 A ⃗ 2 + ⋯ + x n A ⃗ n = b ⃗ x_1\vec{A}_1+x_2\vec{A}_2+\dots+x_n\vec{A}_n=\vec{b} x1A 1+x2A 2++xnA n=b
设此时 r ( A ) = r ( [ A ∣ b ⃗ ] ) < n r(A)=r([A|\vec{b}])<n r(A)=r([Ab ])<n,则存在不全为零的 { y 1 , … , y n } \{y_1,\dots,y_n\} {y1,,yn}
使得 y 1 A ⃗ 1 + y 2 A ⃗ 2 + ⋯ + y n A ⃗ n = 0 y_1\vec{A}_1+y_2\vec{A}_2+\dots+y_n\vec{A}_n=0 y1A 1+y2A 2++ynA n=0
那么, b ⃗ = x 1 A ⃗ 1 + x 2 A ⃗ 2 + ⋯ + x n A ⃗ n + y 1 A ⃗ 1 + y 2 A ⃗ 2 + ⋯ + y n A ⃗ n = ( x 1 + y 1 ) A ⃗ 1 + ( x 2 + y 2 ) A ⃗ 2 + ⋯ + ( x n + y n ) A ⃗ n \vec{b}=x_1\vec{A}_1+x_2\vec{A}_2+\dots+x_n\vec{A}_n+y_1\vec{A}_1+y_2\vec{A}_2+\dots+y_n\vec{A}_n=(x_1+y_1)\vec{A}_1+(x_2+y_2)\vec{A}_2+\dots+(x_n+y_n)\vec{A}_n b =x1A 1+x2A 2++xnA n+y1A 1+y2A 2++ynA n=(x1+y1)A 1+(x2+y2)A 2++(xn+yn)A n
故, { ( x 1 + y 1 ) , ( x 2 + y 2 ) , … , ( x n + y n ) } \{(x_1+y_1),(x_2+y_2),\dots,(x_n+y_n)\} {(x1+y1),(x2+y2),,(xn+yn)}也是方程组的解,与解唯一相悖。

那么, r ( A ) = r ( [ A ∣ b ⃗ ] ) = n r(A)=r([A|\vec{b}])=n r(A)=r([Ab ])=n

r ( A ) = r ( [ A ∣ b ⃗ ] ) = n r(A)=r([A|\vec{b}])=n r(A)=r([Ab ])=n,则方程组有解,且 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\} {A 1,A 2,,A n}线性无关但 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n , b ⃗ } \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n,\vec{b}\} {A 1,A 2,,A nb }线性相关。
则由定理2.5知: b ⃗ \vec{b} b 可由 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ n } \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_n\} {A 1,A 2,,A n}唯一的线性表示,即解唯一。

推论4.1 A X ⃗ = 0 A\vec{X}=0 AX =0有非零解 ⟺ r ( A ) < n \Longleftrightarrow r(A)<n r(A)<n

定理4.2:齐次线性方程组的解集合 { X ⃗ ∣ A X ⃗ = 0 } \{\vec{X}|A\vec{X}=0\} {X AX =0}一个向量空间,称作解空间;非齐次线性方程组的解集合不是向量空间。
证明:若 X ⃗ 1 , X ⃗ 2 ∈ { X ⃗ ∣ A X ⃗ = 0 } \vec{X}_1,\vec{X}_2\in\{\vec{X}|A\vec{X}=0\} X 1,X 2{X AX =0},即 A X ⃗ 1 = 0 A\vec{X}_1=0 AX 1=0, A X ⃗ 2 = 0 A\vec{X}_2=0 AX 2=0
   \quad\ \ \quad    k 1 A X ⃗ 1 + k 2 A X ⃗ 2 = A ( k 1 X ⃗ 1 + k 2 X ⃗ 2 ) = 0 k_1A\vec{X}_1+k_2A\vec{X}_2=A(k_1\vec{X}_1+k_2\vec{X}_2)=0 k1AX 1+k2AX 2=A(k1X 1+k2X 2)=0
   \quad\ \ \quad    k 1 X ⃗ 1 + k 2 X ⃗ 2 ∈ { X ⃗ ∣ A X ⃗ = 0 } k_1\vec{X}_1+k_2\vec{X}_2\in\{\vec{X}|A\vec{X}=0\} k1X 1+k2X 2{X AX =0}.

   \quad\ \ \quad    X ⃗ 1 , X ⃗ 2 ∈ { X ⃗ ∣ A X ⃗ = b ⃗ } \vec{X}_1,\vec{X}_2\in\{\vec{X}|A\vec{X}=\vec{b}\} X 1,X 2{X AX =b },即 A X ⃗ 1 = b ⃗ A\vec{X}_1=\vec{b} AX 1=b , A X ⃗ 2 = b ⃗ A\vec{X}_2=\vec{b} AX 2=b
   \quad\ \ \quad    k 1 A X ⃗ 1 + k 2 A X ⃗ 2 = A ( k 1 X ⃗ 1 + k 2 X ⃗ 2 ) = ( k 1 + k 2 ) b ⃗ ≠ b ⃗ k_1A\vec{X}_1+k_2A\vec{X}_2=A(k_1\vec{X}_1+k_2\vec{X}_2)=(k_1+k_2)\vec{b}\ne \vec{b} k1AX 1+k2AX 2=A(k1X 1+k2X 2)=(k1+k2)b =b
   \quad\ \ \quad    k 1 X ⃗ 1 + k 2 X ⃗ 2 ∉ { X ⃗ ∣ A X ⃗ = b ⃗ } k_1\vec{X}_1+k_2\vec{X}_2 \notin\{\vec{X}|A\vec{X}= \vec{b}\} k1X 1+k2X 2/{X AX =b }.

定义4.2:齐次线性方程组 A X ⃗ = 0 A \vec X=0 AX =0解空间 N ( A ) N(A) N(A)的基称作该方程组的 基础解系

定理4.2:齐次线性方程组 A m × n X ⃗ = 0 A_{m\times n} \vec X=0 Am×nX =0解空间 N ( A ) N(A) N(A)的维数 d i m ( N ( A ) ) = n − r ( A ) dim(N(A))=n-r(A) dim(N(A))=nr(A).
证明:设 r ( A ) = r r(A)=r r(A)=r,不妨设A的列向量组的极大线性无关组为 { A ⃗ 1 , A ⃗ 2 , … , A ⃗ r } \{\vec{A}_1,\vec{A}_2,\dots,\vec{A}_r\} {A 1,A 2,,A r}.
   \quad\ \ \quad   那么, A ⃗ i = k i 1 A ⃗ 1 + k i 2 A ⃗ 2 + ⋯ + k i r A ⃗ r ( i = r + 1 , r + 2 , … , n ) \vec{A}_i=k_{i1}\vec{A}_1+k_{i2}\vec{A}_2+\dots+k_{ir}\vec{A}_r\qquad (i=r+1,r+2,\dots,n) A i=ki1A 1+ki2A 2++kirA r(i=r+1,r+2,,n)
   \quad\ \ \quad   即, − A ⃗ i + k i 1 A ⃗ 1 + k i 2 A ⃗ 2 + ⋯ + k i r A ⃗ r = 0 ( i = r + 1 , r + 2 , … , n ) -\vec{A}_i+k_{i1}\vec{A}_1+k_{i2}\vec{A}_2+\dots+k_{ir}\vec{A}_r=0\quad (i=r+1,r+2,\dots,n) A i+ki1A 1+ki2A 2++kirA r=0(i=r+1,r+2,,n)
   \quad\ \ \quad   故此,寻找到 ( n − r ) (n-r) (nr)个线性方程组的特解:
α ⃗ 1 = [ k r + 1 , 1 k r + 1 , 2 ⋮ k r + 1 , r − 1 0 ⋮ 0 ] , α ⃗ 2 = [ k r + 2 , 1 k r + 2 , 2 ⋮ k r + 2 , r 0 − 1 ⋮ 0 ] , … , α ⃗ n − r = [ k n , 1 k n , 2 ⋮ k n , r 0 0 ⋮ − 1 ] \vec{\alpha}_1=\begin{bmatrix}k_{r+1,1}\\k_{r+1,2}\\\vdots\\k_{r+1,r}\\-1\\0\\\vdots\\0\end{bmatrix},\vec{\alpha}_2=\begin{bmatrix}k_{r+2,1}\\k_{r+2,2}\\\vdots\\k_{r+2,r}\\0\\-1\\\vdots\\0\end{bmatrix},\dots,\vec{\alpha}_{n-r}=\begin{bmatrix}k_{n,1}\\k_{n,2}\\\vdots\\k_{n,r}\\0\\0\\\vdots\\-1\end{bmatrix} α 1= kr+1,1kr+1,2kr+1,r100 ,α 2= kr+2,1kr+2,2kr+2,r010 α nr= kn,1kn,2kn,r001
   \quad\ \ \quad   显然,矩阵 [ α ⃗ 1 , α ⃗ 2 , … , α ⃗ n − r ] [\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_{n-r}] [α 1,α 2,,α nr]的秩为 n − r n-r nr
   \quad\ \ \quad   则,向量组 { α ⃗ 1 , α ⃗ 2 , … , α ⃗ n − r } \{\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_{n-r}\} {α 1,α 2,,α nr}线性无关
   \quad\ \ \quad   为说明这 n − r n-r nr个特解为解空间的基,还需要说明任意解均可由它们线性组合而成
   \quad\ \ \quad    A A A进行行变换,由于行变换不改变其列向量的线性组合关系
   \quad\ \ \quad\quad\quad    A ↦ B = [ e ⃗ 1 , e ⃗ 2 , … , e ⃗ r , β ⃗ r + 1 , β ⃗ r + 2 , … , β ⃗ n ] A\mapsto B=[\vec{e}_1,\vec{e}_2,\dots,\vec{e}_r,\vec{\beta}_{r+1},\vec{\beta}_{r+2},\dots,\vec{\beta}_{n}] AB=[e 1,e 2,,e r,β r+1,β r+2,,β n]
   \quad\ \ \quad   那么, β i = [ k i 1 k i 2 ⋮ k i r ] ( i = r + 1 , r + 2 , … , n ) \beta_i=\begin{bmatrix}k_{i1}\\k_{i2}\\\vdots\\k_{ir}\end{bmatrix}\qquad(i=r+1,r+2,\dots,n) βi= ki1ki2kir (i=r+1,r+2,,n)
   \quad\ \ \quad    B X ⃗ = 0 B\vec{X}=0 BX =0即, { x 1 + k r + 1 , 1 x r + 1 + ⋯ + k n 1 x n = 0 x 2 + k r + 1 , 2 x r + 1 + ⋯ + k n 2 x n = 0 … x r + k r + 1 , r x r + 1 + ⋯ + k n r x n = 0 \begin{cases}x_1+k_{r+1,1}x_{r+1}+\dots+k_{n1}x_{n}=0\\ x_2+k_{r+1,2}x_{r+1}+\dots+k_{n2}x_{n}=0\\ \dots\\ x_r+k_{r+1,r}x_{r+1}+\dots+k_{nr}x_{n}=0\end{cases} x1+kr+1,1xr+1++kn1xn=0x2+kr+1,2xr+1++kn2xn=0xr+kr+1,rxr+1++knrxn=0 与原方程组等价。
   \quad\ \ \quad    ( n − r ) (n-r) (nr)个未知量 x r + 1 , x r + 2 , … , x n x_{r+1},x_{r+2},\dots,x_{n} xr+1,xr+2,,xn为自由未知量,则:
X ⃗ = − x r + 1 [ k r + 1 , 1 k r + 1 , 2 ⋮ k r + 1 , r − 1 0 ⋮ 0 ] − x r + 2 [ k r + 2 , 1 k r + 1 , 2 ⋮ k r + 2 , r 0 − 1 ⋮ 0 ] + ⋯ − x n [ k n 1 k n 2 ⋮ k n r 0 0 ⋮ − 1 ] = − x r + 1 α ⃗ 1 − x r + 2 α ⃗ 2 + ⋯ − x n α ⃗ n \vec{X}=-x_{r+1}\begin{bmatrix}k_{r+1,1}\\k_{r+1,2}\\\vdots\\k_{r+1,r}\\-1\\0\\\vdots\\0\end{bmatrix}-x_{r+2}\begin{bmatrix}k_{r+2,1}\\k_{r+1,2}\\\vdots\\k_{r+2,r}\\0\\-1\\\vdots\\0\end{bmatrix} +\dots-x_{n}\begin{bmatrix}k_{n1}\\k_{n2}\\\vdots\\k_{nr}\\0\\0\\\vdots\\-1\end{bmatrix}=-x_{r+1}\vec{\alpha}_1-x_{r+2}\vec{\alpha}_2+\dots-x_n\vec{\alpha}_n X =xr+1 kr+1,1kr+1,2kr+1,r100 xr+2 kr+2,1kr+1,2kr+2,r010 +xn kn1kn2knr001 =xr+1α 1xr+2α 2+xnα n
   \quad\ \ \quad   综上, { α ⃗ 1 , α ⃗ 2 , … , α ⃗ n − r } \{\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_{n-r}\} {α 1,α 2,,α nr}为解空间的基,解空间的维数为: d i m ( N ( A ) ) = n − r = n − r ( A ) dim(N(A))=n-r=n-r(A) dim(N(A))=nr=nr(A)(证毕)

定理4.3:对实矩阵 A m × n A_{m\times n} Am×n r ( A T A ) = r ( A A T ) = r ( A ) r(A^TA)=r(AA^T)=r(A) r(ATA)=r(AAT)=r(A)
证明:若 X ⃗ \vec{X} X A X ⃗ = 0 A\vec{X}=0 AX =0的解,则 ( A T A ) X ⃗ = 0 (A^TA)\vec{X}=0 (ATA)X =0
   \quad\ \ \quad    X ⃗ \vec{X} X ( A T A ) X ⃗ = 0 (A^TA)\vec{X}=0 (ATA)X =0的解,则 X ⃗ T A T A X ⃗ = ( A X ⃗ , A X ⃗ ) = 0 ⟺ A X ⃗ = 0 \vec{X}^TA^TA\vec{X}=(A\vec{X},A\vec{X})=0\Longleftrightarrow A\vec{X}=0 X TATAX =(AX ,AX )=0AX =0
   \quad\ \ \quad   故,解空间: N ( A ) = N ( A T A ) N(A)=N(A^TA) N(A)=N(ATA)
   \quad\ \ \quad   则, n − r ( A ) = n − r ( A T A ) ⟺ r ( A T A ) = r ( A ) n-r(A)=n-r(A^TA)\Longleftrightarrow r(A^TA)=r(A) nr(A)=nr(ATA)r(ATA)=r(A)
   \quad\ \ \quad   同理可得: r ( A T ) = r ( A A T ) = r ( A ) r(A^T)=r(AA^T)=r(A) r(AT)=r(AAT)=r(A) (证毕)

推论4.1:对实对称矩阵 A A A有: r ( A ) = r ( A 2 ) = r ( A 4 ) = ⋯ = r ( A 2 n ) r(A)=r(A^2)=r(A^4)=\dots=r(A^{2n}) r(A)=r(A2)=r(A4)==r(A2n)

定理4.4:若非齐次线性方程组 A X ⃗ = b ⃗ A\vec{X}=\vec{b} AX =b 有解, X ⃗ 0 \vec{X}_0 X 0为其某个特解, X ⃗ r \vec{X}_r X r为非齐次线性方程组的导出方程组 A X ⃗ = 0 A\vec{X}=0 AX =0的通解,则非齐次线性方程组的通解为 X ⃗ = X ⃗ r + X ⃗ 0 \vec{X}=\vec{X}_r+\vec{X}_0 X =X r+X 0
证明:设 X ⃗ \vec{X} X 为非齐次线性方程组 A X ⃗ = b ⃗ A\vec{X}=\vec{b} AX =b 的解
   \quad\ \ \quad   又, A X ⃗ 0 = b ⃗ A\vec{X}_0=\vec{b} AX 0=b
   \quad\ \ \quad   则, A ( X ⃗ − X ⃗ 0 ) = 0 A(\vec{X}-\vec{X}_0)=0 A(X X 0)=0
   \quad\ \ \quad   故, X ⃗ − X ⃗ 0 = X ⃗ r ⟹ X ⃗ = X ⃗ 0 + X ⃗ r \vec{X}-\vec{X}_0=\vec{X}_r\Longrightarrow \vec{X}=\vec{X}_0+\vec{X}_r X X 0=X rX =X 0+X r (证毕)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值