(十 二)特殊的二阶张量——正交张量的恒等式(三)

命题1: 已知两正交的单位向量 u , v ∈ R 3 \bm{u},\bm{v}\in\mathbb{R}^3 u,vR3 u ⋅ v = 0 \bm{u}\cdot\bm{v}=0 uv=0,设 r = u + λ v , λ ∈ R \bm{r}=u+\lambda\bm{v},\lambda\in\mathbb{R} r=u+λv,λR,得:
{ Q u = I − 2 u ⊗ u Q v = I − 2 v ⊗ v Q r = I − 2 r ∣ r ∣ ⊗ r ∣ r ∣ = I − 2 1 + λ 2 r ⊗ r \begin{cases} \mathbf{Q}_u=\mathbf{I}-2\bm{u}\otimes\bm{u} \\[2mm] \mathbf{Q}_v=\mathbf{I}-2\bm{v}\otimes\bm{v} \\[2mm] \mathbf{Q}_r=\mathbf{I}-2\dfrac{\bm{r}}{|\bm{r}|}\otimes\dfrac{\bm{r}}{|\bm{r}|}=\mathbf{I}-\dfrac{2}{1+\lambda^2}\bm{r}\otimes\bm{r} \end{cases} Qu=I2uuQv=I2vvQr=I2rrrr=I1+λ22rr
则有:

1) Q u ⋅ Q v = Q u + Q v − I = Q v ⋅ Q u = ( Q u ⋅ Q v ) T \mathbf{Q}_u\cdot\mathbf{Q}_v=\mathbf{Q}_u+\mathbf{Q}_v-\mathbf{I}=\mathbf{Q}_v\cdot\mathbf{Q}_u=(\mathbf{Q}_u\cdot\mathbf{Q}_v)^T QuQv=Qu+QvI=QvQu=(QuQv)T

2) Q r ⋅ ( Q u + Q v ) = I + Q u ⋅ Q v = 1 2 ( Q u + Q v ) 2 = 1 2 ( I + Q u ⋅ Q v ) 2 , ( ∀   λ ∈ R ) \mathbf{Q}_r\cdot(\mathbf{Q}_u+\mathbf{Q}_v)=\mathbf{I}+\mathbf{Q}_u\cdot\mathbf{Q}_v=\dfrac{1}{2}(\mathbf{Q}_u+\mathbf{Q}_v)^2=\dfrac{1}{2}(\mathbf{I}+\mathbf{Q}_u\cdot\mathbf{Q}_v)^2,\quad(\forall~\lambda\in\mathbb{R}) Qr(Qu+Qv)=I+QuQv=21(Qu+Qv)2=21(I+QuQv)2,( λR)

3) d e t ( Q u + Q v ) = 0 det(\mathbf{Q}_u+\mathbf{Q}_v)=0 det(Qu+Qv)=0.

证明:1)注意到 Q u , Q v \mathbf{Q}_u,\mathbf{Q}_v Qu,Qv 均为正交的对称仿射量:
Q u ⋅ Q v = ( I − 2 u ⊗ u ) ⋅ ( I − 2 v ⊗ v ) = I − 2 u ⊗ u − 2 v ⊗ v = Q u + Q v − I = Q v ⋅ Q u = Q v T ⋅ Q u T = ( Q u ⋅ Q v ) T \begin{align*} \mathbf{Q}_u\cdot\mathbf{Q}_v &=(\mathbf{I}-2\bm{u}\otimes\bm{u})\cdot(\mathbf{I}-2\bm{v}\otimes\bm{v})\\[2mm] &=\mathbf{I}-2\bm{u}\otimes\bm{u}-2\bm{v}\otimes\bm{v}\\[2mm] &=\mathbf{Q}_u+\mathbf{Q}_v-\mathbf{I}=\mathbf{Q}_v\cdot\mathbf{Q}_u=\mathbf{Q}_v^T\cdot\mathbf{Q}_u^T=(\mathbf{Q}_u\cdot\mathbf{Q}_v)^T \end{align*} QuQv=(I2uu)(I2vv)=I2uu2vv=Qu+QvI=QvQu=QvTQuT=(QuQv)T
2)直接代入验证:
Q r ⋅ ( Q u + Q v ) = ( I − 2 1 + λ 2 r ⊗ r ) ⋅ 2 ( I − u ⊗ u − v ⊗ v ) = 2 ( I − u ⊗ u − v ⊗ v ) = I + Q u ⋅ Q v = 1 2 ( Q u + Q v ) 2 = 1 2 ( I + Q u ⋅ Q v ) 2 \begin{align*} \mathbf{Q}_r\cdot(\mathbf{Q}_u+\mathbf{Q}_v) &=\left(\mathbf{I}-\dfrac{2}{1+\lambda^2}\bm{r}\otimes\bm{r}\right)\cdot2(\mathbf{I}-\bm{u}\otimes\bm{u}-\bm{v}\otimes\bm{v})\\[5mm] &=2(\mathbf{I}-\bm{u}\otimes\bm{u}-\bm{v}\otimes\bm{v})\\[2mm] &=\mathbf{I}+\mathbf{Q}_u\cdot\mathbf{Q}_v=\dfrac{1}{2}(\mathbf{Q}_u+\mathbf{Q}_v)^2 =\dfrac{1}{2}(\mathbf{I}+\mathbf{Q}_u\cdot\mathbf{Q}_v)^2 \end{align*} Qr(Qu+Qv)=(I1+λ22rr)2(Iuuvv)=2(Iuuvv)=I+QuQv=21(Qu+Qv)2=21(I+QuQv)2
3)由2)可知:
− d e t ( Q u + Q v ) = 1 2 d e t 2 ( Q u + Q v )   ⟹   d e t ( Q u + Q v ) = 0  或  − 2 -det(\mathbf{Q}_u+\mathbf{Q}_v)=\frac{1}{2}det^2(\mathbf{Q}_u+\mathbf{Q}_v)~\Longrightarrow~det(\mathbf{Q}_u+\mathbf{Q}_v)=0~\text{或}~-2 det(Qu+Qv)=21det2(Qu+Qv)  det(Qu+Qv)=0  2 d e t ( Q u + Q v ) = − 2 det(\mathbf{Q}_u+\mathbf{Q}_v)=-2 det(Qu+Qv)=2,则仿射量 Q u + Q v \mathbf{Q}_u+\mathbf{Q}_v Qu+Qv 正则 / 可逆。故
Q r = 1 2 ( Q u + Q v ) ( ∀   λ ∈ R ) \mathbf{Q}_r=\dfrac{1}{2}(\mathbf{Q}_u+\mathbf{Q}_v)\quad(\forall~\lambda\in\mathbb{R}) Qr=21(Qu+Qv)( λR)代入 Q r , Q u , Q v \mathbf{Q}_r,\mathbf{Q}_u,\mathbf{Q}_v Qr,Qu,Qv的表达式可得:
( 1 − λ 2 ) ( u ⊗ u − v ⊗ v ) + 2 λ ( u ⊗ v + v ⊗ u ) = 0 (1-\lambda^2)(\bm{u}\otimes\bm{u}-\bm{v}\otimes\bm{v})+2\lambda(\bm{u}\otimes\bm{v}+\bm{v}\otimes\bm{u})=0 (1λ2)(uuvv)+2λ(uv+vu)=0由于 u ⊗ u , v ⊗ v , u ⊗ v , v ⊗ u \bm{u}\otimes\bm{u},\bm{v}\otimes\bm{v},\bm{u}\otimes\bm{v},\bm{v}\otimes\bm{u} uu,vv,uv,vu 线性无关,故
{ 1 − λ 2 = 0 2 λ = 0   ⟹   λ 无解 \begin{cases} 1-\lambda^2=0\\[2mm] 2\lambda=0 \end{cases} ~\Longrightarrow~ \lambda\text{无解} 1λ2=02λ=0  λ无解与任意 λ \lambda λ矛盾,证毕。


命题2: 已知两正交的单位向量 u , v ∈ R 3 \bm{u},\bm{v}\in\mathbb{R}^3 u,vR3 u ⋅ v = 0 \bm{u}\cdot\bm{v}=0 uv=0,由于绕 v \bm v v 旋转 ψ \psi ψ 角度的正常正交张量为:
Q v ( ψ ) = c o s ψ I + ( 1 − c o s ψ ) v ⊗ v − s i n ψ   ε ⋅ v \mathbf{Q}^{\bm{v}}(\psi)=cos\psi\mathbf{I}+(1-cos\psi)\bm{v}\otimes\bm{v}-sin\psi~\bm{\varepsilon}\cdot\bm{v} Qv(ψ)=cosψI+(1cosψ)vvsinψ εv u \bm{u} u v \bm v v 轴旋转 θ \theta θ 得到 u ( θ ) \bm{u}(\theta) u(θ),即
u ( θ ) = Q v ( θ ) ⋅ u = c o s ( θ ) u − s i n ( θ ) ε : ( u ⊗ v ) = c o s ( θ ) u − s i n ( θ ) ( u × v ) \bm{u}(\theta) =\mathbf{Q}^{\bm{v}}(\theta)\cdot\bm{u} =cos(\theta)\bm{u}-sin(\theta)\bm{\varepsilon}:(\bm{u}\otimes\bm{v}) =cos(\theta)\bm{u}-sin(\theta)(\bm{u}\times\bm{v}) u(θ)=Qv(θ)u=cos(θ)usin(θ)ε:(uv)=cos(θ)usin(θ)(u×v)显然, u ( 0 ) = u \bm{u}(0)=\bm{u} u(0)=u,令
{ Q ( θ ) = I − 2 u ( θ ) ⊗ u ( θ ) Q v = I − 2 v ⊗ v \begin{cases} \mathbf{Q}(\theta)=\mathbf{I}-2\bm{u}(\theta)\otimes\bm{u}(\theta)\\[3mm] \mathbf{Q}_v=\mathbf{I}-2\bm{v}\otimes\bm{v} \end{cases} Q(θ)=I2u(θ)u(θ)Qv=I2vv则有:

1) Q ( − θ ) = Q ( 0 ) ⋅ Q ( θ ) ⋅ Q ( 0 ) \mathbf{Q}(-\theta)=\mathbf{Q}(0)\cdot\mathbf{Q}(\theta)\cdot\mathbf{Q}(0) Q(θ)=Q(0)Q(θ)Q(0)

2) Q ( θ 1 + θ 2 ) = Q ( θ 1 ) ⋅ Q ( 0 ) ⋅ Q ( θ 2 ) \mathbf{Q}(\theta_1+\theta_2)=\mathbf{Q}(\theta_1)\cdot\mathbf{Q}(0)\cdot\mathbf{Q}(\theta_2) Q(θ1+θ2)=Q(θ1)Q(0)Q(θ2)

3) Q v = − Q ( 0 ) ⋅ Q ( π 2 ) \mathbf{Q}_v=-\mathbf{Q}(0)\cdot\mathbf{Q}(\frac{\pi}{2}) Qv=Q(0)Q(2π)

证明:1)由已知:
Q ( θ ) = I − 2 [ c o s ( θ ) u − s i n ( θ ) ( u × v ) ] ⊗ [ c o s ( θ ) u − s i n ( θ ) ( u × v ) ] = I − 2 [ c o s 2 θ u ⊗ u − s i n θ c o s θ   u ⊗ ( u × v ) − s i n θ c o s θ   ( u × v ) ⊗ u + s i n 2 θ ( u × v ) ⊗ ( u × v ) ] Q ( 0 ) = I − 2 u ⊗ u \begin{align*} \mathbf{Q}(\theta) &=\mathbf{I}-2[cos(\theta)\bm{u}-sin(\theta)(\bm{u}\times\bm{v})]\otimes[cos(\theta)\bm{u}-sin(\theta)(\bm{u}\times\bm{v})]\\[2mm] &=\mathbf{I}-2[cos^2\theta\bm{u}\otimes\bm{u}- sin\theta cos\theta~\bm{u}\otimes(\bm{u}\times\bm{v})- sin\theta cos\theta~(\bm{u}\times\bm{v})\otimes\bm{u}+sin^2\theta(\bm{u}\times\bm{v})\otimes(\bm{u}\times\bm{v})]\\[3mm] \mathbf{Q}(0)&=\mathbf{I}-2\bm{u}\otimes\bm{u} \end{align*} Q(θ)Q(0)=I2[cos(θ)usin(θ)(u×v)][cos(θ)usin(θ)(u×v)]=I2[cos2θuusinθcosθ u(u×v)sinθcosθ (u×v)u+sin2θ(u×v)(u×v)]=I2uu
Q ( 0 ) ⋅ Q ( θ ) ⋅ Q ( 0 ) = Q ( θ ) − 4 s i n θ c o s θ   u ⊗ ( u × v ) − 4 s i n θ c o s θ   ( u × v ) × u = Q ( − θ ) \mathbf{Q}(0)\cdot\mathbf{Q}(\theta)\cdot\mathbf{Q}(0) =\mathbf{Q}(\theta)-4sin\theta cos\theta~\bm{u}\otimes(\bm{u}\times\bm{v})-4sin\theta cos\theta~(\bm{u}\times\bm{v})\times\bm{u}=\mathbf{Q}(-\theta) Q(0)Q(θ)Q(0)=Q(θ)4sinθcosθ u(u×v)4sinθcosθ (u×v)×u=Q(θ)
2)将 Q ( θ 1 ) ⋅ Q ( 0 ) ⋅ Q ( θ 2 ) \mathbf{Q}(\theta_1)\cdot\mathbf{Q}(0)\cdot\mathbf{Q}(\theta_2) Q(θ1)Q(0)Q(θ2) 写作对应矩阵形式的乘法:
[ − c o s 2 θ 1 0 s i n 2 θ 1 0 1 0 s i n 2 θ 1 0 c o s 2 θ 1 ] [ − 1 0 0 0 1 0 0 0 1 ] [ − c o s 2 θ 2 0 s i n 2 θ 2 0 1 0 s i n 2 θ 2 0 c o s 2 θ 2 ] = [ − c o s 2 ( θ 1 + θ 2 ) 0 s i n 2 ( θ 1 + θ 2 ) 0 1 0 s i n 2 ( θ 1 + θ 2 ) 0 c o s 2 ( θ 1 + θ 2 ) ] \begin{bmatrix} -cos2\theta_1 &0 &sin2\theta_1\\[2mm] 0 & 1& 0\\[2mm] sin2\theta_1 & 0 &cos2\theta_1 \end{bmatrix} \begin{bmatrix} -1 &0 &0\\[2mm] 0 & 1& 0\\[2mm] 0& 0 &1 \end{bmatrix} \begin{bmatrix} -cos2\theta_2 &0 &sin2\theta_2\\[2mm] 0 & 1& 0\\[2mm] sin2\theta_2 & 0 &cos2\theta_2 \end{bmatrix}= \begin{bmatrix} -cos2(\theta_1+\theta_2) &0 &sin2(\theta_1+\theta_2)\\[2mm] 0 & 1& 0\\[2mm] sin2(\theta_1+\theta_2) & 0 &cos2(\theta_1+\theta_2) \end{bmatrix} cos2θ10sin2θ1010sin2θ10cos2θ1 100010001 cos2θ20sin2θ2010sin2θ20cos2θ2 = cos2(θ1+θ2)0sin2(θ1+θ2)010sin2(θ1+θ2)0cos2(θ1+θ2) 右侧对应为: [ Q ( θ 1 + θ 2 ) ] [\mathbf{Q}(\theta_1+\theta_2)] [Q(θ1+θ2)],故
Q ( θ 1 + θ 2 ) = Q ( θ 1 ) ⋅ Q ( 0 ) ⋅ Q ( θ 2 ) \mathbf{Q}(\theta_1+\theta_2)=\mathbf{Q}(\theta_1)\cdot\mathbf{Q}(0)\cdot\mathbf{Q}(\theta_2) Q(θ1+θ2)=Q(θ1)Q(0)Q(θ2)
3) 由已知:
Q ( π / 2 ) = I − 2 ( u × v ) ⊗ ( u × v ) \mathbf{Q}({\pi}/{2})=\mathbf{I}-2(\bm{u}\times\bm{v})\otimes(\bm{u}\times\bm{v}) Q(π/2)=I2(u×v)(u×v)
Q ( 0 ) ⋅ Q ( π / 2 ) = ( I − 2 u ⊗ u ) ⋅ [ I − 2 ( u × v ) ⊗ ( u × v ) ] = I − 2 u ⊗ u − 2 ( u × v ) ⊗ ( u × v ) = [ u ⊗ u + v ⊗ v + ( u × v ) ⊗ ( u × v ) ] − 2 u ⊗ u − 2 ( u × v ) ⊗ ( u × v ) = − ( I − 2 v ⊗ v ) = − Q v \begin{align*} \mathbf{Q}(0)\cdot\mathbf{Q}({\pi}/{2}) &=(\mathbf{I}-2\bm{u}\otimes\bm{u})\cdot[\mathbf{I}-2(\bm{u}\times\bm{v})\otimes(\bm{u}\times\bm{v})]\\[2mm] &=\mathbf{I}-2\bm{u}\otimes\bm{u}-2(\bm{u}\times\bm{v})\otimes(\bm{u}\times\bm{v}) \\[2mm] &=[\bm{u}\otimes\bm{u}+\bm{v}\otimes\bm{v}+(\bm{u}\times\bm{v})\otimes(\bm{u}\times\bm{v})]-2\bm{u}\otimes\bm{u}-2(\bm{u}\times\bm{v})\otimes(\bm{u}\times\bm{v}) \\[2mm] &=-(\mathbf{I}-2\bm{v}\otimes\bm{v})=-\mathbf{Q}_v \\[2mm] \end{align*} Q(0)Q(π/2)=(I2uu)[I2(u×v)(u×v)]=I2uu2(u×v)(u×v)=[uu+vv+(u×v)(u×v)]2uu2(u×v)(u×v)=(I2vv)=Qv


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值