(五)物质导数与空间时间导数

1. 物质导数与空间时间导数及二者的联系

考虑运动变形过程中代表性物质点的物理量 Φ \bold\Phi Φ(张量) 随时间的变化率

  • 在物质描述中, Φ \bold\Phi Φ ( X ⃗ , t ) (\vec{X},t) (X ,t) 为自变量;
  • 在空间描述中, Φ \bold\Phi Φ ( x ⃗ , t ) (\vec{x},t) (x ,t) 为自变量。

物理量 Φ \bold \Phi Φ 随某一固定的物质点一起运动的时间变化率(称作:物质导数)可写作:
D Φ D t = ( ∂ Φ ( X ⃗ , t ) ∂ t ) ∣ X ⃗ ≜ Φ ∙ \dfrac{D\bold \Phi}{Dt} =\left. \left(\frac{\partial \bold\Phi(\vec{X},t)}{\partial t}\right)\right|_{\vec X} \triangleq \overset{\bullet}{\bold\Phi} DtDΦ=(tΦ(X ,t)) X Φ
物理量 Φ \bold \Phi Φ 在某一固定的空间坐标上的时间变化率(称作:空间时间导数/局部导数)可写作:
( ∂ Φ ( x ⃗ , t ) ∂ t ) ∣ x ⃗ ≜ Φ ′ \left. \left(\frac{\partial \bold\Phi(\vec{x},t)}{\partial t}\right)\right|_{\vec x} \triangleq \bold\Phi' (tΦ(x ,t)) x Φ

根据复合函数的求导法则可推出:
Φ ∙ = { ∂ Φ [ x ⃗ ( X ⃗ , t ) , t ] ∂ t } ∣ X ⃗ = ( ∂ Φ ∂ t ) ∣ x ⃗ + ( ∂ Φ ∂ x r ) ( ∂ x r ∂ t ) ∣ X ⃗ = Φ ′ + ( ∂ Φ ∂ x r ⊗ g ⃗   r ) ⋅ ( g ⃗ s ∂ x s ∂ t ) ∣ X ⃗ = Φ ′ + ( Φ ▽ ) ⋅ ( ∂ x ⃗ ∂ t ) ∣ X ⃗ = Φ ′ + ( Φ ▽ ) ⋅ ( ∂ u ⃗ ∂ t ) = Φ ′ + ( Φ ▽ ) ⋅ v ⃗ = Φ ′ + v ⃗ ⋅ ( ▽ Φ ) \begin{aligned} & \overset{\bullet}{\bold\Phi} =\left. \left\{\frac{\partial \bold\Phi[\vec{x}(\vec{X},t),t]}{\partial t}\right\}\right|_{\vec X} \\\\ &\quad=\left.\left(\dfrac{\partial\bold\Phi}{\partial t}\right)\right|_{\vec{x}}+\left(\dfrac{\partial\bold\Phi}{\partial {x}^r}\right)\left.\left(\dfrac{\partial x^r}{\partial t}\right)\right|_{\vec{X}}\\\\ &\quad=\bold\Phi'+\left(\dfrac{\partial\bold\Phi}{\partial {x}^r}\otimes\vec{g}\ ^r\right)\cdot\left.\left(\vec{g}_s\dfrac{\partial x^s}{\partial t}\right)\right|_{\vec{X}}\\\\ &\quad=\bold\Phi'+\left(\bold\Phi\triangledown\right)\cdot\left.\left(\dfrac{\partial\vec x}{\partial t}\right)\right|_{\vec{X}}\\\\ &\quad=\bold\Phi'+\left(\bold\Phi\triangledown\right)\cdot\left(\dfrac{\partial\vec u}{\partial t}\right)\\\\ &\quad=\bold\Phi'+\left(\bold\Phi\triangledown\right)\cdot\vec{v}\\\\ &\quad=\bold\Phi'+\vec{v}\cdot\left(\triangledown\bold\Phi\right) \end{aligned} Φ={tΦ[x (X ,t),t]} X =(tΦ) x +(xrΦ)(txr) X =Φ+(xrΦg  r)(g stxs) X =Φ+(Φ)(tx ) X =Φ+(Φ)(tu )=Φ+(Φ)v =Φ+v (Φ)

2. 空间坐标系相关量的物质导数

2.1. 空间坐标系基矢的物质导数

随时间变化,某一固定物质点将映射至空间坐标系中的不同位置。因此,“空间坐标系基矢的物质导数”是指:某一物质点所在处的基矢变化率。故
g ⃗ i ∙ = ( g ⃗ i ) ′ + v ⃗ ⋅ ▽ g ⃗ i = v ⃗ ⋅ ▽ g ⃗ i = v j ∂ g ⃗ i ∂ x j = v j Γ i j k g ⃗ k = v j Γ i j , k g ⃗ k \overset{\bullet}{\vec{g}_i} =(\vec{g}_i)'+\vec{v}\cdot\triangledown\vec{g}_i =\vec{v}\cdot\triangledown\vec{g}_i =v^j\dfrac{\partial \vec{g}_i}{\partial x^j} =v^j\Gamma_{ij}^k\vec{g}_k =v^j\Gamma_{ij,k}\vec{g}^k g i=(g i)+v g i=v g i=vjxjg i=vjΓijkg k=vjΓij,kg k
式中, Γ i j k 、 Γ i j , k \Gamma_{ij}^k、\Gamma_{ij,k} ΓijkΓij,k 分别为空间坐标系的第二类、第一类 Christoffel 符号。又由于
D D t ( g ⃗ i ⋅ g ⃗ j ) = g ⃗ i ∙ ⋅ g ⃗ j + g ⃗ i ⋅ g ⃗ j ∙ = 0 ⟹ g ⃗ i ⋅ g ⃗ j ∙ = − g ⃗ i ∙ ⋅ g ⃗ j \dfrac{D}{Dt}(\vec{g}_i\cdot\vec{g}^j) =\overset{\bullet}{\vec{g}_i}\cdot\vec{g}^j+\vec{g}_i\cdot\overset{\bullet}{\vec{g}^j} =0 \Longrightarrow \vec{g}_i\cdot\overset{\bullet}{\vec{g}^j}=-\overset{\bullet}{\vec{g}_i}\cdot\vec{g}^j DtD(g ig j)=g ig j+g ig j=0g ig j=g ig j
g ⃗ j ∙ = β i j g ⃗ i \overset{\bullet}{\vec{g}^j}=\beta^j_i\vec{g}^i g j=βijg i ,那么:
g ⃗ i ⋅ β k j g ⃗ k = β i j = − g ⃗ i ∙ ⋅ g ⃗ j = − v k Γ i k j \vec{g}_i\cdot\beta^j_k\vec{g}^k =\beta^j_i =-\overset{\bullet}{\vec{g}_i}\cdot\vec{g}^j =-v^k\Gamma^j_{ik} g iβkjg k=βij=g ig j=vkΓikj
故,
g ⃗ j ∙ = − v k Γ i k j g ⃗ i \overset{\bullet}{\vec{g}^j}=-v^k\Gamma^j_{ik}\vec{g}^i g j=vkΓikjg i

2.2. 空间坐标系协变基矢混合积的 g \sqrt{g} g 的物质导数

由空间坐标系基矢的物质导数可知:
g i j ∙ = g ⃗ i ∙ ⋅ g ⃗ j + g ⃗ i ⋅ g ⃗ j ∙ = v r ( Γ i r k g k j + Γ j r k g k i ) = v r ( Γ i r , j + Γ j r , i ) \overset{\bullet}{g_{ij}} =\overset{\bullet}{\vec{g}_i}\cdot\vec{g}_j+\vec{g}_i\cdot\overset{\bullet}{\vec{g}_j} =v^r(\Gamma^k_{ir}g_{kj}+\Gamma^k_{jr}g_{ki}) =v^r(\Gamma_{ir,j}+\Gamma_{jr,i}) gij=g ig j+g ig j=vr(Γirkgkj+Γjrkgki)=vr(Γir,j+Γjr,i)
由于,
1 d e t ( [ A ] ) [ A ∗ ] = [ A ] − 1 \dfrac{1}{det([A])}[A^*]=[A]^{-1} det([A])1[A]=[A]1
其中, [ A ∗ ] [A^*] [A] [ A ] [A] [A] 的伴随矩阵。则
1 g ∂ g ∂ g j i = g i j , g = d e t ( g i j ) \dfrac{1}{g}\dfrac{\partial g}{\partial g_{ji}}=g^{ij},g=det(g_{ij}) g1gjig=gijg=det(gij)
故, d e t ( g i j ) det(g_{ij}) det(gij) 的物质导数为:
g ∙ = ∂ g ∂ g j i g j i ∙ = g g i j g j i ∙ = g v r ( Γ i r i + Γ j r j ) = 2 g v r Γ i r i \overset{\bullet}{g} =\dfrac{\partial g}{\partial g_{ji}}\overset{\bullet}{g_{ji}} =gg^{ij}\overset{\bullet}{g_{ji}} =gv^r(\Gamma_{ir}^i+\Gamma_{jr}^j) =2gv^r\Gamma_{ir}^i g=gjiggji=ggijgji=gvr(Γiri+Γjrj)=2gvrΓiri
式中, Γ i r i \Gamma_{ir}^i Γiri 为空间坐标系的第二类Christoffel 符号。进一步:
g ∙ = g v r Γ i r i \overset{\bullet}{\sqrt{g}}=\sqrt gv^r\Gamma_{ir}^i g =g vrΓiri
上式也可利用第二类Christoffel符号与协变基矢的混合积 g \sqrt{g} g 的关系物质导数和局部导数的关系得到:
g ∙ = v ⃗ ⋅ ( ▽ g ) = v i ∂ g ∂ x i = g v r Γ i r i \overset{\bullet}{\sqrt{g}} =\vec{v}\cdot(\triangledown\sqrt{g}) =v^i\dfrac{\partial \sqrt{g}}{\partial x^i} =\sqrt gv^r\Gamma_{ir}^i g =v (g )=vixig =g vrΓiri

3. 随体坐标系 { X A , t } \{X^A,t\} {XA,t} 相关量的物质导数

3.1. 随体坐标系 { X A , t } \{X^A,t\} {XA,t} 基矢的物质导数

随时间的变化,特定的物质点在随体坐标系 { X A , t } \{X^A,t\} {XA,t} 中的基矢不断改变。其协变基矢的变化率可写作:
C ⃗ A ∙ = [ ∂ ∂ t ( ∂ x ⃗ ∂ X A ) ] ∣ X ⃗ = [ ∂ ∂ X A ( ∂ x ⃗ ∂ t ) ] ∣ X ⃗     = ∂ ∂ X A ( ∂ u ⃗ ∂ t ) = ∂ v ⃗ ∂ X A = v B ∣ ∣ A C ⃗ B     = ∂ v ⃗ ∂ x i ∂ x i ∂ X A = x , A i ∂ v ⃗ ∂ x i = x , A i v j ∣ i g ⃗ j \begin{aligned} &\overset{\bullet}{\vec{C}_A} =\left.\left[\dfrac{\partial}{\partial t}\left(\dfrac{\partial \vec{x}}{\partial X^A}\right)\right]\right|_{\vec{X}} =\left.\left[\dfrac{\partial}{\partial X^A}\left(\dfrac{\partial \vec{x}}{\partial t}\right)\right]\right|_{\vec{X}} \\\ \\ &\quad\ =\dfrac{\partial}{\partial X^A}\left(\dfrac{\partial \vec{u}}{\partial t}\right) =\dfrac{\partial\vec{v}}{\partial X^A} =v^B||_A\vec{C}_B \\\ \\ &\quad\ =\dfrac{\partial\vec{v}}{\partial x^i}\dfrac{\partial x^i}{\partial X^A} =x^i_{,A}\dfrac{\partial\vec{v}}{\partial x^i} =x^i_{,A}v^j|_i\vec{g}_j \end{aligned}   C A=[t(XAx )] X =[XA(tx )] X  =XA(tu )=XAv =vBAC B =xiv XAxi=x,Aixiv =x,Aivjig j
同理可知
C ⃗ A ∙ ∙ = ∂ a ⃗ ∂ X A = a B ∣ ∣ A C ⃗ B \overset{\bullet\bullet}{\vec{C}_A} =\dfrac{\partial\vec{a}}{\partial X^A} =a^B||_A\vec{C}_B C A∙∙=XAa =aBAC B

D C ⃗ A ⋅ C ⃗ B D t = C ⃗ A ∙ ⋅ C ⃗ B + C ⃗ A ⋅ C ⃗ B ∙ = 0 \dfrac{D{\vec{C}_A\cdot\vec{C}^B}}{Dt} =\overset{\bullet}{\vec{C}_A}\cdot\vec{C}^B+{\vec{C}_A}\cdot\overset{\bullet}{\vec{C}^B} =0 DtDC AC B=C AC B+C AC B=0

C ⃗ A ∙ = − ( C ⃗ B ∙ ⋅ C ⃗ A ) C ⃗ B = − v A ∣ ∣ B C ⃗ B = − X ,   j A v j ∣ i g ⃗ i \overset{\bullet}{\vec{C}^A} =-(\overset{\bullet}{\vec{C}_B}\cdot\vec{C}^A)\vec{C}^B =-v^A||_B\vec{C}^B =-X^A_{,\ j}v^j|_i\vec{g}^i C A=(C BC A)C B=vABC B=X, jAvjig i

3.2. 随体坐标系 { X A , t } \{X^A,t\} {XA,t} 协变基矢混合积的 C \sqrt{C} C 的物质导数

C ∙ A B = C ⃗ ∙ A ⋅ C ⃗ B + C ⃗ A ⋅ C ⃗ ∙ B = v B ∣ ∣ A + v A ∣ ∣ B \overset{\bullet}{C}_{AB} =\overset{\bullet}{\vec C}_{A}\cdot{\vec C}_{B}+\vec{C}_A\cdot\overset{\bullet}{\vec C}_{B} =v_B||_A+v_A||_B CAB=C AC B+C AC B=vBA+vAB

1 C ∂ C ∂ C B A = C − 1   A B , C = d e t ( C A B ) \dfrac{1}{C}\dfrac{\partial C}{\partial C_{BA}}=\overset{-1}{C}\ ^{AB},C=det(C_{AB}) C1CBAC=C1 ABC=det(CAB)

C ∙ = ∂ C ∂ C B A C ∙ A B = C C − 1   A B C ∙ A B = C ( v A ∣ ∣ A + v B ∣ ∣ B ) = 2 C v A ∣ ∣ A \overset{\bullet}{C} =\dfrac{\partial C}{\partial C_{BA}}\overset{\bullet}{C}_{AB} =C\overset{-1}{C}\ ^{AB}\overset{\bullet}{C}_{AB} =C(v^A||_A+v^B||_B) =2Cv^A||_A C=CBACCAB=CC1 ABCAB=C(vAA+vBB)=2CvAA
进一步知:
C ∙ = 1 2 C C ∙ = C v A ∣ ∣ A \overset{\bullet}{\sqrt C} =\dfrac{1}{2\sqrt C}\overset{\bullet}{C} =\sqrt Cv^A||_A C =2C 1C=C vAA

3.3. J \mathscr{J} J 的物质导数

由于,
J = d e t ( F ) = C G \mathscr{J}=det(\bold F)=\sqrt{\dfrac{C}{G}} J=det(F)=GC
故,
J ∙ = C ∙ G = C G v A ∣ ∣ A = J v A ∣ ∣ A = J ▽ ⋅ v ⃗ \overset{\bullet}{\mathscr{J}} ={\dfrac{\overset{\bullet}{\sqrt C}}{\sqrt G}} =\dfrac{\sqrt C}{\sqrt G}v^A||_A =\mathscr{J}v^A||_A =\mathscr{J}\triangledown\cdot\vec{v} J=G C =G C vAA=JvAA=Jv

4. 任意张量在空间坐标系与随体坐标系 { X A , t } \{X^A,t\} {XA,t} 中的物质导数

以三阶张量为例:
Φ = Φ ∙ ∙ k i j   g ⃗ i ⊗ g ⃗ j ⊗ g ⃗ k = Φ ∙ ∙ M A B   C ⃗ A ⊗ C ⃗ B ⊗ C ⃗ M \bold\Phi =\varPhi^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k =\varPhi^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\vec{C}_B\otimes\vec{C}^M Φ=Φ∙∙kij g ig jg k=Φ∙∙MAB C AC BC M

Φ ∙ = Φ ∙   ∙ ∙ M A B   C ⃗ A ⊗ C ⃗ B ⊗ C ⃗ M + Φ ∙ ∙ M A B   C ⃗ A ∙ ⊗ C ⃗ B ⊗ C ⃗ M + Φ ∙ ∙ M A B   C ⃗ A ⊗ C ⃗ B ∙ ⊗ C ⃗ M + Φ ∙ ∙ M A B   C ⃗ A ⊗ C ⃗ B ⊗ C ⃗ ∙   M     = ( Φ ∙   ∙ ∙ M A B + Φ ∙ ∙ M N B   v A ∣ ∣ N + Φ ∙ ∙ M A N   v B ∣ ∣ N − Φ ∙ ∙ N A B   v N ∣ ∣ M )   C ⃗ A ⊗ C ⃗ B ⊗ C ⃗ M \begin{aligned} &\overset{\bullet}{\bold\Phi} =\overset{\bullet}{\varPhi}\ ^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\vec{C}_B\otimes\vec{C}^M +\varPhi^{AB}_{\bullet\bullet M}\ \overset{\bullet}{\vec{C}_A}\otimes\vec{C}_B\otimes\vec{C}^M +\varPhi^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\overset{\bullet}{\vec{C}_B}\otimes\vec{C}^M +\varPhi^{AB}_{\bullet\bullet M}\ \vec{C}_A\otimes\vec{C}_B\otimes\overset{\bullet}{\vec{C}}\ ^M \\\\ &\ \ \ =(\overset{\bullet}{\varPhi}\ ^{AB}_{\bullet\bullet M}+\varPhi^{NB}_{\bullet\bullet M}\ v^A||_N+\varPhi^{AN}_{\bullet\bullet M}\ v^B||_N-\varPhi^{AB}_{\bullet\bullet N}\ v^N||_M)\ \vec{C}_A\otimes\vec{C}_B\otimes\vec{C}^M \end{aligned} Φ=Φ ∙∙MAB C AC BC M+Φ∙∙MAB C AC BC M+Φ∙∙MAB C AC BC M+Φ∙∙MAB C AC BC  M   =(Φ ∙∙MAB+Φ∙∙MNB vAN+Φ∙∙MAN vBNΦ∙∙NAB vNM) C AC BC M

Φ ∙ = Φ ∙   ∙ ∙ k i j   g ⃗ i ⊗ g ⃗ j ⊗ g ⃗ k + Φ ∙ ∙ k i j   g ⃗ ∙ i ⊗ g ⃗ j ⊗ g ⃗ k + Φ ∙ ∙ k i j   g ⃗ i ⊗ g ⃗ ∙ j ⊗ g ⃗ k + Φ ∙ ∙ k i j   g ⃗ i ⊗ g ⃗ j ⊗ g ⃗ ∙   k     = ( Φ ∙   ∙ ∙ k i j + Φ   ∙ ∙ k s j v r Γ r s i + Φ   ∙ ∙ k i s v r Γ r s j − Φ   ∙ ∙ s i j v r Γ r k s )   g ⃗ i ⊗ g ⃗ j ⊗ g ⃗ k     = [ ( Φ   ∙ ∙ k i j ) ′ + ( v r Φ   ∙ ∙ k , r i j + Φ   ∙ ∙ k s j v r Γ r s i + Φ   ∙ ∙ k i s v r Γ r s j − Φ   ∙ ∙ s i j v r Γ r k s ) ]   g ⃗ i ⊗ g ⃗ j ⊗ g ⃗ k     = [ ( Φ   ∙ ∙ k i j ) ′ + v r Φ   ∙ ∙ k i j ∣ r ) ]   g ⃗ i ⊗ g ⃗ j ⊗ g ⃗ k     = Φ ′ + v ⃗ ⋅ ▽ Φ \begin{aligned} &\overset{\bullet}{\bold\Phi} =\overset{\bullet}{\varPhi}\ ^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k +\varPhi^{ij}_{\bullet\bullet k}\ \overset{\bullet}{\vec{g}}_i\otimes\vec{g}_j\otimes\vec{g}^k +\varPhi^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\overset{\bullet}{\vec{g}}_j\otimes\vec{g}^k +\varPhi^{ij}_{\bullet\bullet k}\ \vec{g}_i\otimes\vec{g}_j\otimes\overset{\bullet}{\vec{g}}\ ^k \\\\ &\ \ \ =(\overset{\bullet}{\varPhi}\ ^{ij}_{\bullet\bullet k}+{\varPhi}\ ^{sj}_{\bullet\bullet k}v^r\Gamma^i_{rs}+{\varPhi}\ ^{is}_{\bullet\bullet k}v^r\Gamma^j_{rs}-{\varPhi}\ ^{ij}_{\bullet\bullet s}v^r\Gamma^s_{rk})\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k \\\\ &\ \ \ =[({\varPhi}\ ^{ij}_{\bullet\bullet k})'+(v^r{\varPhi}\ ^{ij}_{\bullet\bullet k,r}+{\varPhi}\ ^{sj}_{\bullet\bullet k}v^r\Gamma^i_{rs}+{\varPhi}\ ^{is}_{\bullet\bullet k}v^r\Gamma^j_{rs}-{\varPhi}\ ^{ij}_{\bullet\bullet s}v^r\Gamma^s_{rk})]\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k \\\\ &\ \ \ =[({\varPhi}\ ^{ij}_{\bullet\bullet k})'+v^r{\varPhi}\ ^{ij}_{\bullet\bullet k}|_r)]\ \vec{g}_i\otimes\vec{g}_j\otimes\vec{g}^k \\\\ &\ \ \ =\bold\Phi'+\vec{v}\cdot\triangledown\bold\Phi \end{aligned} Φ=Φ ∙∙kij g ig jg k+Φ∙∙kij g ig jg k+Φ∙∙kij g ig jg k+Φ∙∙kij g ig jg  k   =(Φ ∙∙kij+Φ ∙∙ksjvrΓrsi+Φ ∙∙kisvrΓrsjΦ ∙∙sijvrΓrks) g ig jg k   =[(Φ ∙∙kij)+(vrΦ ∙∙k,rij+Φ ∙∙ksjvrΓrsi+Φ ∙∙kisvrΓrsjΦ ∙∙sijvrΓrks)] g ig jg k   =[(Φ ∙∙kij)+vrΦ ∙∙kijr)] g ig jg k   =Φ+v Φ

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值