连续介质力学
文章平均质量分 92
个人笔记
Albert M
这个作者很懒,什么都没留下…
展开
-
(二)变形梯度和相对变形梯度
若某张量的分量或张量基涉及两个不互相独立的坐标系,便称之为。原创 2023-02-25 09:44:29 · 1402 阅读 · 0 评论 -
(三)代表性物质点邻域的变形分析
由于变形梯度为正则仿射量,故可进行极分解:F=R⋅U=V⋅R\bold F=\bold R\cdot\bold U=\bold V\cdot \bold RF=R⋅U=V⋅R将正交仿射量 R\bold RR 称作转动张量;正张量 U\bold UU、V\bold VV 分别称作 右、左伸长张量,且满足:U=FT⋅F V=F⋅FT U=RT⋅V⋅R\bold U=\sqrt{\bold{F^T\cdot F}}\\\ \\\bold V=\sqrt{\bold{F\cdot F^T}}\\\ \\\原创 2023-02-25 09:43:29 · 648 阅读 · 0 评论 -
(四)应变度量
无论是立足于参考构型还是当前构型,某一代表性物质点领域内的变形(某方向的长度比、任意两方向夹角的变化、面元体元的改变)均可通过主长度比/主方向加以描述。1822 年 Cauchy 提出在小变形条件下,可用熟知的六个柯西应变分量来度量材料的线段变形与角度变形,又。,来描述代表性物质点邻域内的变形状态。式中运用了无变形无应变的条件。立足于参考构型,经历变形后,任意方向线元。立足于当前构型,经历变形后,任意方向线元。时的极限 (应用洛必达法则),即。于 1968 年定义了。原创 2023-02-25 09:44:50 · 1099 阅读 · 2 评论 -
(五)物质导数与空间时间导数
的物质导数3. 随体坐标系 {XA,t}\{X^A,t\}{XA,t} 相关量的物质导数3.1. 随体坐标系 {XA,t}\{X^A,t\}{XA,t} 基矢的物质导数3.2. 随体坐标系 {XA,t}\{X^A,t\}{XA,t} 协变基矢混合积的 C\sqrt{C}C 的物质导数3.3. J\mathscr{J}J 的物质导数4. 任意张量在空间坐标系与随体坐标系 {XA,t}\{X^A,t\}{XA,t} 中的物质导数考虑运动变形过程中代表性物质点的物理量 Φ\bold\PhiΦ(张量) 随时间原创 2023-02-25 10:30:47 · 1411 阅读 · 2 评论 -
(六)速度梯度与加速度梯度
对于速度场 v⃗=v⃗(x⃗,t)=vig⃗i\vec{v}=\vec{v}(\vec{x},t)=v^i\vec{g}_iv=v(x,t)=vigi,其右梯度 (称作速度梯度) 可写作v⃗▽=∂v⃗∂xj⊗g⃗ j=vi∣jg⃗i⊗g⃗j≜L =∂v⃗∂XA∂XA∂xj⊗g⃗ j=∂v⃗∂XA⊗C⃗A=vB∣∣AC⃗B⊗C⃗A=C⃗∙A⊗C⃗A =(C⃗∙B⊗G⃗B)⋅(G⃗A⊗C⃗A)=F∙⋅F−1\begin{aligned}& \vec{v}\triangledown=\d原创 2023-02-25 09:42:52 · 2351 阅读 · 0 评论 -
(七)输运定理
根据环量输运定理,可知该运动环量不变,又因为速度有势时加速度也有势,故证毕。若加速度 (速度) 为势的梯度,则运动为环量的梯度。为闭合曲线时,则可得到如下的。时刻参考构型中由物质点。时刻它们分别演化为曲线。特别地,取张量场为速度场。,故称上述类型的积分为。特别地,取张量场为向量。原创 2023-02-25 09:43:50 · 492 阅读 · 1 评论 -
(十)守恒律(主平衡原理)
的平面与三个局部协变基向量所在直线相截得到的四面体 ABCD,各面面积与单位法向量如图所示。,如图给出了点 A 处的坐标标架,过点 A 各坐标线的切向为协变基矢。另外根据四面体与平行六面体间的体积关系,可将四面体 ABCD 的体积。式中,假定流不仅依赖于位置坐标与时间,同时还依赖于物体表面的。由于代表性物质点 A 是任意选取的,故将下标 A 省去,写作。的协变分量,对于固定的代表性物质点 A 及恒定的外法向。对于固定的代表性物质点 A 及恒定的外法向。,它在空间坐标系中的位矢为。,现考虑某单位法向量为。原创 2023-02-25 09:45:26 · 292 阅读 · 0 评论 -
(十一)质量、动量、动量矩与能量守恒
在不考虑化学反应(无源项 Ψ=0\bold\Psi=0Ψ=0),物质交换(无流项 π(N⃗)=0\bold\pi(\vec{N})=0π(N)=0)的情况下,质量守恒可以表示为 (Φ=1\bold\Phi=1Φ=1):DDt∫vρdv=∫vDDt(ρdv)=∫v[ρ∙+ρ(▽⋅v⃗)]dv=0\dfrac{D}{Dt}\int_v\rho dv=\int_v\dfrac{D}{Dt}(\rho dv) =\int_v[\overset{\bullet}{\rho}+\rho(\triangledown\原创 2023-02-25 09:42:20 · 909 阅读 · 0 评论