(十 七)张量函数的微分与导数

1. 范数

定义 V \mathscr{V} V 为“向量空间”,定义由向量空间到实数的映射 ∣ ∣ ∙ ∣ ∣ : V → R ||\bullet||:\mathscr{V}\rightarrow \R ∣∣∣∣:VR,若该映射满足:

(1) ∣ ∣ u ∣ ∣ ≥ 0  且  ∣ ∣ u ∣ ∣ = 0 ⟺ u = 0 ||u||\ge0\ 且\ ||u||=0\Longleftrightarrow u=0 ∣∣u∣∣0  ∣∣u∣∣=0u=0

(2) ∣ ∣ α u ∣ ∣ = ∣ α ∣ ⋅ ∣ ∣ u ∣ ∣ ||\alpha u||=|\alpha|\cdot||u|| ∣∣αu∣∣=α∣∣u∣∣

(3) ∣ ∣ u + v ∣ ∣ ≤ ∣ ∣ u ∣ ∣ + ∣ ∣ v ∣ ∣ ||u+v||\le||u||+||v|| ∣∣u+v∣∣∣∣u∣∣+∣∣v∣∣

其中, u , v ∈ V ; α ∈ R u,v\in\mathscr{V};\alpha\in\R u,vV;αR 。则称 ∣ ∣ u ∣ ∣ ||u|| ∣∣u∣∣ 为定义在 V \mathscr{V} V 上向量 u u u范数,向量空间 V \mathscr{V} V 称为线性赋范空间

2. 线性表示定理

定理 对于将 r r r 阶张量映射为 s s s 阶张量的线性映射 Ψ : F r ( V ) → F s ( V ) : Φ ↦ Ψ ( Φ ) \bold{\Psi}:\mathscr{F}_r(\mathscr{V})\rightarrow\mathscr{F}_s(\mathscr{V}):\bold{\Phi}\mapsto \bold{\Psi(\Phi)} Ψ:Fr(V)Fs(V):ΦΨ(Φ),存在唯一 Θ ∈ F r + s ( V ) \bold\Theta\in\mathscr{F}_{r+s}(\mathscr{V}) ΘFr+s(V) 使得上述线性映射可以由张量的 r r r 阶并联式点积表示,即
Ψ ( Φ ) = Θ ( ∙ r ) Φ 或 Ψ ( Φ ) = Φ ( ∙ r ) Θ \bold{\Psi(\Phi)}=\bold\Theta(^r_\bullet)\bold\Phi \quad或\quad \bold{\Psi(\Phi)}=\Phi(^r_\bullet)\bold\Theta Ψ(Φ)=Θ(r)ΦΨ(Φ)=Φ(r)Θ

证明: Ψ ( Φ ) \bold{\Psi(\Phi)} Ψ(Φ) 表示将 r r r 阶张量映射为 s s s 阶张量的映射,故:
Ψ ( g ⃗ i 1 ⊗ g ⃗ i 2 ⊗ ⋯ ⊗ g ⃗ i r ) = Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) g ⃗ j 1 ⊗ g ⃗ j 2 ⊗ ⋯ ⊗ g ⃗ j s \bold\Psi(\vec{g}_{i_1}\otimes\vec{g}_{i_2}\otimes\dots\otimes\vec{g}_{i_r})=\Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r)\vec{g}_{j_1}\otimes\vec{g}_{j_2}\otimes\dots\otimes\vec{g}_{j_s} Ψ(g i1g i2g ir)=Θj1,j2,,js(i1,i2,,ir)g j1g j2g js
需要说明的是:对于确定的指标 i 1 , i 2 , … , i r i_1,i_2,\dots,i_r i1,i2,,ir 而言, Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) \Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r) Θj1,j2,,js(i1,i2,,ir) s s s 阶张量的分量,但 Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) \Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r) Θj1,j2,,js(i1,i2,,ir) 整体表示的数集却不一定为张量的分量。根据映射的线性性,对于任意的 r r r 阶张量 Φ = Φ i 1 , i 2 , … , i r g ⃗ i 1 ⊗ g ⃗ i 2 ⊗ ⋯ ⊗ g ⃗ i r \bold\Phi=\Phi^{i_1,i_2,\dots,i_r}\vec{g}_{i_1}\otimes\vec{g}_{i_2}\otimes\dots\otimes\vec{g}_{i_r} Φ=Φi1,i2,,irg i1g i2g ir 有:
Ψ ( Φ ) = Φ i 1 , i 2 , … , i r Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) g ⃗ j 1 ⊗ g ⃗ j 2 ⊗ ⋯ ⊗ g ⃗ j s \bold{\Psi(\Phi)}=\Phi^{i_1,i_2,\dots,i_r}\Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r)\vec{g}_{j_1}\otimes\vec{g}_{j_2}\otimes\dots\otimes\vec{g}_{j_s} Ψ(Φ)=Φi1,i2,,irΘj1,j2,,js(i1,i2,,ir)g j1g j2g js
根据商法则知: Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) \Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r) Θj1,j2,,js(i1,i2,,ir) r + s r+s r+s 阶张量的分量。 若定义:
Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) ≜ Θ    i 1 , i 2 , … , i r j 1 , j 2 , … , j s \Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r)\triangleq\Theta^{j_1,j_2,\dots,j_s}_{\qquad\quad\ \ i_1,i_2,\dots,i_r} Θj1,j2,,js(i1,i2,,ir)Θ  i1,i2,,irj1,j2,,js

Ψ j 1 , j 2 , … , j s = Θ    i 1 , i 2 , … , i r j 1 , j 2 , … , j s Φ i 1 , i 2 , … , i r ⟺ Ψ = Θ ( ∙ r ) Φ \Psi^{j_1,j_2,\dots,j_s}=\Theta^{j_1,j_2,\dots,j_s}_{\qquad\quad\ \ i_1,i_2,\dots,i_r}\Phi^{i_1,i_2,\dots,i_r}\Longleftrightarrow \bold\Psi=\Theta(^r_\bullet)\bold\Phi Ψj1,j2,,js=Θ  i1,i2,,irj1,j2,,jsΦi1,i2,,irΨ=Θ(r)Φ
若定义:
Θ j 1 , j 2 , … , j s ( i 1 , i 2 , … , i r ) ≜ Θ i 1 , i 2 , … , i r    j 1 , j 2 , … , j s \Theta^{j_1,j_2,\dots,j_s}(i_1,i_2,\dots,i_r)\triangleq\Theta_{i_1,i_2,\dots,i_r}^{\qquad\quad\ \ j_1,j_2,\dots,j_s} Θj1,j2,,js(i1,i2,,ir)Θi1,i2,,ir  j1,j2,,js

Ψ j 1 , j 2 , … , j s = Φ i 1 , i 2 , … , i r Θ i 1 , i 2 , … , i r    j 1 , j 2 , … , j s ⟺ Ψ = Φ ( ∙ r ) Θ \Psi^{j_1,j_2,\dots,j_s}=\Phi^{i_1,i_2,\dots,i_r}\Theta_{i_1,i_2,\dots,i_r}^{\qquad\quad\ \ j_1,j_2,\dots,j_s}\Longleftrightarrow \bold\Psi=\Phi(^r_\bullet)\bold\Theta\qquad Ψj1,j2,,js=Φi1,i2,,irΘi1,i2,,ir  j1,j2,,jsΨ=Φ(r)Θ
最后证明唯一性,设
Ψ ( Φ ) = Θ 1 ( ∙ r ) Φ = Θ 2 ( ∙ r ) Φ \bold{\Psi(\Phi)}=\bold\Theta_1(^r_\bullet)\bold\Phi=\bold\Theta_2(^r_\bullet)\bold\Phi Ψ(Φ)=Θ1(r)Φ=Θ2(r)Φ

( Θ 1 − Θ 2 ) ( ∙ r ) Φ = 0 \bold(\Theta_1-\Theta_2)(^r_\bullet)\bold\Phi=0 (Θ1Θ2)(r)Φ=0
Φ \bold\Phi Φ 的任意性知:
Θ 1 = Θ 2 ( 证毕 ) \bold\Theta_1=\bold\Theta_2\quad(证毕) Θ1=Θ2(证毕)

3. 张量函数的连续、微分与导数

定义 对于张量函数 f : F r ( V ) → F s ( V ) : u ↦ f ( u ) f:\mathscr{F}_r(\mathscr{V})\rightarrow\mathscr{F}_s(\mathscr{V}):u\mapsto f(u) f:Fr(V)Fs(V):uf(u),若
∀   ε ∈ R + , ∃   δ ∈ R + , s . t . ∣ ∣ f ( u ) − f ( u 0 ) ∣ ∣ < ε , p . t . ∣ ∣ u − u 0 ∣ ∣ < δ \forall\ \varepsilon\in R^+,\exist\ \delta\in R^+,s.t. ||f(u)-f(u_0)||<\varepsilon,p.t. ||u-u_0||<\delta  εR+ δR+s.t.∣∣f(u)f(u0)∣∣<εp.t.∣∣uu0∣∣<δ
则称张量函数 f ( u ) f(u) f(u) u 0 u_0 u0连续

定义 对于张量函数 f : F r ( V ) → F s ( V ) : u ↦ f ( u ) f:\mathscr{F}_r(\mathscr{V})\rightarrow\mathscr{F}_s(\mathscr{V}):u\mapsto f(u) f:Fr(V)Fs(V):uf(u),若满足对 ∀   u ∈ F r ( V ) \forall\ u\in \mathscr{F}_r(\mathscr{V})  uFr(V),均存在由 r r r 阶张量到 s s s 阶张量的映射 f ′ ( v ) [ u ] f'(v)[u] f(v)[u] 使得对于 ∀   h ∈ R \forall\ h\in\R  hR,均有:
  f ( v + h u ) = f ( v ) + h f ′ ( v ) [ u ] + o ( h u ) \ f(v+hu)=f(v)+hf'(v)[u]+o(hu)  f(v+hu)=f(v)+hf(v)[u]+o(hu)
其中,
lim ⁡ h → 0 ∣ ∣ o ( h u ) ∣ ∣ ∣ ∣ h u ∣ ∣ = lim ⁡ h → 0 ∣ ∣ o ( h u ) ∣ ∣ ∣ h ∣ ⋅ ∣ ∣ u ∣ ∣ = lim ⁡ h → 0 ∣ ∣ o ( h u ) ∣ ∣ ∣ h ∣ = 0 \lim_{h\rightarrow 0}\frac{||o(hu)||}{||hu||}=\lim_{h\rightarrow 0}\frac{||o(hu)||}{|h|\cdot||u||}=\lim_{h\rightarrow 0}\frac{||o(hu)||}{|h|}=0 h0lim∣∣hu∣∣∣∣o(hu)∣∣=h0limh∣∣u∣∣∣∣o(hu)∣∣=h0limh∣∣o(hu)∣∣=0
则称 f ( u ) f(u) f(u) v v v 处可微 f ′ ( v ) [ u ] f'(v)[u] f(v)[u]称作 f ( u ) f(u) f(u)的微分,且根据张量函数可微的定义知:
f ′ ( v ) [ u ] = lim ⁡ h → 0 f ( v + h u ) − f ( v ) h = d f ( v + h u ) d h ∣ h = 0 ( ∗ ) f'(v)[u]=\lim_{h\rightarrow 0}\frac{f(v+hu)-f(v)}{h}=\left. \frac{df(v+hu)}{dh}\right|_{h=0}\qquad(*) f(v)[u]=h0limhf(v+hu)f(v)=dhdf(v+hu) h=0()
上式给出了张量函数微分的计算方式,最后一个等号是因为:
  d f ( v + h u ) d h ∣ h = 0 = lim ⁡ Δ h → 0 f ( v + ( h + Δ h ) u ) − f ( v + h u ) Δ h ∣ h = 0 = lim ⁡ Δ h → 0 f ( v + u Δ h ) − f ( v ) Δ h = f ′ ( v ) [ u ] \begin{aligned} &\quad\ \left. \frac{df(v+hu)}{dh}\right|_{h=0}\\\\ &=\left.\lim_{\Delta h\rightarrow0}\frac{f(v+(h+\Delta h)u)-f(v+hu)}{\Delta h}\right|_{h=0}\\\\ &=\lim_{\Delta h\rightarrow0}\frac{f(v+u\Delta h)-f(v)}{\Delta h}\\\\ &=f'(v)[u] \end{aligned}  dhdf(v+hu) h=0=Δh0limΔhf(v+(h+Δh)u)f(v+hu) h=0=Δh0limΔhf(v+uΔh)f(v)=f(v)[u]
通过 ( ∗ ) (*) () 还可知 r r r 阶张量到 s s s 阶张量的映射 f ′ ( v ) [ u ] f'(v)[u] f(v)[u] 为线性映射,因为:
( 1 )   f ′ ( v ) [ α u ] ( α ∈ R ) = lim ⁡ h → 0 f ( v + h α u ) − f ( v ) h = α lim ⁡ k → 0 f ( v + k u ) − f ( v ) k ( h ≜ k α ) = α f ′ ( v ) [ u ]   ( 2 )   f ′ ( v ) [ u + w ] = lim ⁡ h → 0 f ( v + h u + h w ) − f ( v ) h = lim ⁡ h → 0 f ( v + h u + h w ) − f ( v + h u ) h + lim ⁡ h → 0 f ( v + h u ) − f ( v ) h = f ′ ( v ) [ w ] + f ′ ( v ) [ u ] \begin{aligned} &(1)\quad\ f'(v)[\alpha u]\quad(\alpha\in R)\\\\ &=\lim_{h\rightarrow 0}\frac{f(v+h\alpha u)-f(v)}{h}\\\\ &=\alpha\lim_{k\rightarrow 0}\frac{f(v+k u)-f(v)}{k}\quad(h\triangleq\frac{k}{\alpha})\\\\ &=\alpha f'(v)[u]\\\\ \\\ &(2)\quad\ f'(v)[u+w]\\\\ &=\lim_{h\rightarrow 0}\frac{f(v+hu+hw)-f(v)}{h}\\\\ &=\lim_{h\rightarrow 0}\frac{f(v+hu+hw)-f(v+hu)}{h}+\lim_{h\rightarrow 0}\frac{f(v+hu)-f(v)}{h}\\\\ &=f'(v)[w]+f'(v)[u] \end{aligned}  (1) f(v)[αu](αR)=h0limhf(v+hαu)f(v)=αk0limkf(v+ku)f(v)(hαk)=αf(v)[u](2) f(v)[u+w]=h0limhf(v+hu+hw)f(v)=h0limhf(v+hu+hw)f(v+hu)+h0limhf(v+hu)f(v)=f(v)[w]+f(v)[u]
那么,根据线性表示定理
f ′ ( v ) [ u ] = d f d v R ( ∙ r ) u 或 f ′ ( v ) [ u ] = u ( ∙ r ) d f d v L f'(v)[u]=\frac{df}{dv}_R(^r_\bullet)u\quad或\quad f'(v)[u]=u(^r_\bullet)\frac{df}{dv}_L f(v)[u]=dvdfR(r)uf(v)[u]=u(r)dvdfL
其中, d f d v L , d f d v R \dfrac{df}{dv}_L,\dfrac{df}{dv}_R dvdfL,dvdfR 均为 r + s r+s r+s 阶张量,将其分别称作张量函数的左、右导数(梯度)

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值