【连续介质力学】张量的偏微分、球张量和偏张量

张量的偏微分

张量的一阶微分,定义:
∂ A ∂ A = A , A = ∂ A i j ∂ A k l ( e ^ i ⨂ e ^ j ⨂ e ^ k ⨂ e ^ l ) = δ i k δ j l ( e ^ i ⨂ e ^ j ⨂ e ^ k ⨂ e ^ l ) = I \frac{\partial A}{\partial A} = A_{,A}=\frac{\partial A_{ij}}{\partial A_{kl}}(\hat e_i\bigotimes\hat e_j\bigotimes\hat e_k\bigotimes\hat e_l )\\=\delta_{ik}\delta_{jl}(\hat e_i\bigotimes\hat e_j\bigotimes\hat e_k\bigotimes\hat e_l ) = I AA=A,A=AklAij(e^ie^je^ke^l)=δikδjl(e^ie^je^ke^l)=I

张量的迹的微分
∂ T r ( A ) ∂ A = T r ( A ) , A = ∂ A k k ∂ A i j ( e ^ i ⨂ e ^ j ) = δ k i δ k j ( e ^ i ⨂ e ^ j ) = δ i j ( e ^ i ⨂ e ^ j ) = 1 \frac{\partial Tr(A)}{\partial A} = Tr(A)_{,A}=\frac{\partial A_{kk}}{\partial A_{ij}}(\hat e_i\bigotimes\hat e_j )\\=\delta_{ki}\delta_{kj}(\hat e_i\bigotimes\hat e_j ) = \delta_{ij}(\hat e_i\bigotimes\hat e_j ) = 1 ATr(A)=Tr(A),A=AijAkk(e^ie^j)=δkiδkj(e^ie^j)=δij(e^ie^j)=1

张量的迹平方的微分
∂ T r ( A ) 2 ∂ A = 2 T r ( A ) T r ( A ) , A = 2 T r ( A ) 1 \frac{\partial Tr(A)^2}{\partial A} = 2Tr(A)Tr(A)_{,A}=2Tr(A)1 ATr(A)2=2Tr(A)Tr(A),A=2Tr(A)1

张量平方的迹的微分
∂ T r ( A 2 ) ∂ A = ∂ A s r A r s ∂ A i j ( e ^ i ⨂ e ^ j ) = [ A r s ∂ A s r ∂ A i j + A s r ∂ A r s ∂ A i j ] ( e ^ i ⨂ e ^ j ) = [ A r s δ s i δ r j + A s r δ r i δ s j ] ( e ^ i ⨂ e ^ j ) = [ A j i + A j i ] ( e ^ i ⨂ e ^ j ) = 2 A j i ( e ^ i ⨂ e ^ j ) = 2 A T \frac{\partial Tr(A^2)}{\partial A} =\frac{\partial A_{sr}A_{rs}}{\partial A_{ij}}(\hat e_i\bigotimes\hat e_j )\\=[A_{rs}\frac{\partial A_{sr}}{\partial A_{ij}} + A_{sr}\frac{\partial A_{rs}}{\partial A_{ij}}](\hat e_i\bigotimes\hat e_j )\\ =[A_{rs}\delta_{si}\delta_{rj}+A_{sr}\delta_{ri}\delta_{sj}](\hat e_i\bigotimes\hat e_j )\\= [A_{ji}+A_{ji}](\hat e_i\bigotimes\hat e_j )=2A_{ji}(\hat e_i\bigotimes\hat e_j )=2A^T ATr(A2)=AijAsrArs(e^ie^j)=[ArsAijAsr+AsrAijArs](e^ie^j)=[Arsδsiδrj+Asrδriδsj](e^ie^j)=[Aji+Aji](e^ie^j)=2Aji(e^ie^j)=2AT

张量立方的迹的微分
∂ T r ( A 3 ) ∂ A = ∂ A p q A q r A r p ∂ A i j ( e ^ i ⨂ e ^ j ) = [ A q r A r p ∂ A p q ∂ A i j + A p q A r p ∂ A q r ∂ A i j + A p q A q r ∂ A r p ∂ A i j ] ( e ^ i ⨂ e ^ j ) = [ A q r A r p δ p i δ q j + A p q A r p δ q i δ r j + A p q A q r δ r i δ p j ] ( e ^ i ⨂ e ^ j ) = [ A j r A r i + A p i A j p + A j q A q i ] ( e ^ i ⨂ e ^ j ) = 3 A j r A r i ( e ^ i ⨂ e ^ j ) = 3 ( A 2 ) T \frac{\partial Tr(A^3)}{\partial A} =\frac{\partial A_{pq}A_{qr}A_{rp}}{\partial A_{ij}}(\hat e_i\bigotimes\hat e_j )\\=[A_{qr}A_{rp}\frac{\partial A_{pq}}{\partial A_{ij}} + A_{pq}A_{rp}\frac{\partial A_{qr}}{\partial A_{ij}} + A_{pq}A_{qr}\frac{\partial A_{rp}}{\partial A_{ij}} ](\hat e_i\bigotimes\hat e_j )\\ =[A_{qr}A_{rp}\delta_{pi}\delta_{qj} + A_{pq}A_{rp} \delta_{qi}\delta_{rj} + A_{pq}A_{qr}\delta_{ri}\delta_{pj}](\hat e_i\bigotimes\hat e_j )\\= [A_{jr}A_{ri}+A_{pi}A_{jp}+A_{jq}A_{qi}](\hat e_i\bigotimes\hat e_j )\\ =3A_{jr}A_{ri}(\hat e_i\bigotimes\hat e_j ) =3(A^2)^T ATr(A3)=AijApqAqrArp(e^ie^j)=[AqrArpAijApq+ApqArpAijAqr+ApqAqrAijArp](e^ie^j)=[AqrArpδpiδqj+ApqArpδqiδrj+ApqAqrδriδpj](e^ie^j)=[AjrAri+ApiAjp+AjqAqi](e^ie^j)=3AjrAri(e^ie^j)=3(A2)T

对于对称张量
∂ T r ( C ) ∂ C = 1 ∂ [ T r ( C ) ] 2 ∂ C = 2 T r ( C ) 1 ∂ [ T r ( C 2 ) ] ∂ C = 2 C T = 2 C ∂ [ T r ( C 3 ) ] ∂ C = 3 ( C 2 ) T = 3 C 2 \frac{\partial Tr(C)}{\partial C} = 1 \\ \frac{\partial [Tr(C)]^2}{\partial C}=2Tr(C) 1 \\ \frac{\partial [Tr(C^2)]}{\partial C}=2C^T=2C \\ \frac{\partial [Tr(C^3)]}{\partial C}=3(C^2)^T=3C^2 CTr(C)=1C[Tr(C)]2=2Tr(C)1C[Tr(C2)]=2CT=2CC[Tr(C3)]=3(C2)T=3C2

张量的范数的微分
∂ ∣ ∣ C ∣ ∣ ∂ C = ∂ C : C ∂ C = ∂ ( T r ( C ⋅ C T ) ) ∂ C = ∂ T r ( C 2 ) ∂ C = 1 2 [ T r ( C 2 ) ] − 1 2 [ T r ( C 2 ) ] , C = 1 2 [ T r ( C 2 ) ] − 1 2 2 C \frac{\partial ||C||}{\partial C}=\frac{\partial \sqrt{C:C}}{\partial C} = \frac{\partial (\sqrt{Tr(C\cdot C^T)})}{\partial C} \\= \frac{\partial \sqrt{Tr(C^2)}}{\partial C}=\frac{1}{2}[Tr(C^2)]^{-\frac{1}{2}}[Tr(C^2)]_{,C}\\=\frac{1}{2}[Tr(C^2)]^{-\frac{1}{2}}2C C∣∣C∣∣=CC:C =C(Tr(CCT) )=CTr(C2) =21[Tr(C2)]21[Tr(C2)],C=21[Tr(C2)]212C

∂ ∣ ∣ C ∣ ∣ ∂ C = C T r ( C 2 ) = C ∣ ∣ C ∣ ∣ \frac{\partial ||C||}{\partial C} = \frac{C}{\sqrt{Tr(C^2)}}=\frac{C}{||C||} C∣∣C∣∣=Tr(C2) C=∣∣C∣∣C

有趣的微分
在这里插入图片描述

张量的逆的微分
由于: ∂ 1 ∂ C = ∂ ( C − 1 ⋅ C ) ∂ C = 0 \frac{\partial 1}{\partial C}=\frac{\partial (C^{-1}\cdot C)}{\partial C}= 0 C1=C(C1C)=0
在这里插入图片描述
由于: C q j = 1 2 ( C q j + C j q ) C_{qj}= \frac{1}{2}(C_{qj}+C_{jq}) Cqj=21(Cqj+Cjq)
在这里插入图片描述
张量形式:
∂ C − 1 ∂ C = 1 2 [ C − 1 ⨂ ‾ C − 1 + C − 1 ⨂ ‾ C − 1 ] \frac{\partial C^{-1}}{\partial C}=\frac{1}{2}[C^{-1}\overline \bigotimes C^{-1}+C^{-1} \underline \bigotimes C^{-1}] CC1=21[C1C1+C1C1]

NOTE: 如果C不是对称的,那么
∂ C i q − 1 ∂ C k l δ q r = − C i q − 1 ∂ C q j ∂ C k l C j r − 1 = − C i q − 1 δ q k δ j l C j r − 1 = − C i k − 1 C l r − 1 \frac{\partial C_{iq}^{-1}}{\partial C_{kl}}\delta_{qr}=-C_{iq}^{-1}\frac{\partial C_{qj}}{\partial C_{kl}}C_{jr}^{-1}=-C_{iq}^{-1}\delta_{qk}\delta_{jl}C_{jr}^{-1} =-C_{ik}^{-1}C_{lr}^{-1} CklCiq1δqr=Ciq1CklCqjCjr1=Ciq1δqkδjlCjr1=Cik1Clr1
不是对称的

不变量的偏微分

I T I_T IT 的微分:
∂ I T ∂ T = ∂ T r ( T ) ∂ T = T r ( T ) , T = 1 \frac{\partial I_T}{\partial T}=\frac{\partial Tr(T)}{\partial T} =Tr(T)_{,T}=1 TIT=TTr(T)=Tr(T),T=1

I I T II_T IIT 的微分:
在这里插入图片描述

应用Cayley-Hamilton定理:
在这里插入图片描述
将上式T表达式,代入 I I T II_T IIT的表达式:
在这里插入图片描述

第三不变量 I I I T III_T IIIT的微分:
在这里插入图片描述
再次应用Cayley-Hamilton定理:
在这里插入图片描述
转置:
在这里插入图片描述
通过比较,可以求出另一种表示 I I I T III_T IIIT的表达式:
∂ I I I T ∂ T = ( I I I T T − 1 ) T = I I I T T − T \frac{\partial III_T}{\partial T}=(III_T T^{-1})^T=III_T T^{-T} TIIIT=(IIITT1)T=IIITTT

张量的时间偏导

定义:
D D t T = T ˙ D 2 D t 2 = T ¨ \frac{D}{Dt}T = \dot T \quad \frac{D^2}{Dt^2}=\ddot T DtDT=T˙Dt2D2=T¨

张量的行列式的时间偏导
D D t [ det ⁡ T ] = D T i j D t c o f ( T ) \frac{D}{Dt}[\det T] = \frac{DT_{ij}}{Dt}cof (T) DtD[detT]=DtDTijcof(T)

其中, c o f ( T ) cof (T) cof(T) 是T的余子式, [ c o f [ T i j ] ] T = det ⁡ ( T ) ( T − 1 ) i j [cof[T_{ij}]]^T = \det (T )(T^{-1})_{ij} [cof[Tij]]T=det(T)(T1)ij

问题1.38 考虑 J = [ det ⁡ b ] 1 2 = ( I I I b ) 1 2 J = [\det b]^{\frac{1}{2}} = (III_b)^{\frac{1}{2}} J=[detb]21=(IIIb)21 b b b是二阶对称张量,求出 J J J ln ⁡ J \ln J lnJ的关于 b b b 的偏导

在这里插入图片描述

球张量和偏张量

任意一个张量都可以分解成球张量和偏张量:
T = T s p h + T d e v = T r ( T ) 3 1 + T d e v = I T 3 1 + T d e v = T m 1 + T d e v T = T^{sph}+T^{dev}=\frac{Tr(T)}{3}1+T^{dev}=\frac{I_T}{3}1+T^{dev}=T_m1+T^{dev} T=Tsph+Tdev=3Tr(T)1+Tdev=3IT1+Tdev=Tm1+Tdev

所以,偏张量的定义:
T d e v = T − T r ( T ) 3 1 = T − T m 1 T^{dev} = T - \frac{Tr(T)}{3}1=T - T_m1 Tdev=T3Tr(T)1=TTm1

由于张量T是对称的, T = T T T = T^T T=TT,所以:
在这里插入图片描述
在笛卡尔坐标系表示球张量和偏张量:
在这里插入图片描述
接下来介绍根据张量T主不变量的偏张量不变量

偏张量的第一不变量

在这里插入图片描述
任意偏张量的迹都为0

偏张量的第二不变量

在主空间中,张量T的分量是:
在这里插入图片描述
主不变量为: I T = T 1 + T 2 + T 3 ; I I T = T 1 T 2 + T 2 T 3 + T 3 T 1 ; I I I T = T 1 T 2 T 3 I_T = T_1+T_2+T_3; \quad II_T = T_1T_2+T_2T_3+T_3T_1; \quad III_T=T_1T_2T_3 IT=T1+T2+T3;IIT=T1T2+T2T3+T3T1;IIIT=T1T2T3

那么偏张量 T d e v = T − T m 1 T^{dev} = T - T_m1 Tdev=TTm1 在主空间的分量为:
在这里插入图片描述
所以,偏张量的第二不变量是:
在这里插入图片描述
同样地,也可以用从第二不变量的定义出发证明:
定义:
在这里插入图片描述
那么偏张量的第二不变量为:
在这里插入图片描述
因为不变量不随坐标系的改变而改变,所以在主空间和一般的笛卡尔坐标系中的表达式一样

可以观察到: T r ( T 2 ) = T 1 2 + T 2 2 + T 3 2 = I T 2 − 2 I I T Tr(T^2) = T_1^2 + T_2^2 + T_3^2=I_T^2-2II_T Tr(T2)=T12+T22+T32=IT22IIT,(问题1.31),偏张量的第二不变量公式变为用张量T的第一和第二不变量表示的形式
I I T d e v = 1 2 [ − I T 2 + 2 I I T + I T 2 3 ] = 1 2 [ 2 I I T − 2 I T 2 3 ] = 1 3 ( 3 I I T − I T 2 ) II_{T^{dev}}=\frac{1}{2}[-I_T^2+2II_T+\frac{I_T^2}{3}]=\frac{1}{2}[2II_T-\frac{2I_T^2}{3}]=\frac{1}{3}(3II_T-I_T^2) IITdev=21[IT2+2IIT+3IT2]=21[2IIT32IT2]=31(3IITIT2)

另一种形式是用偏张量分量表示的形式:
I I T d e v = − 1 2 T r [ ( T d e v ) 2 ] = − 1 2 T r [ ( T d e v ⋅ T d e v ) ] = − 1 2 T d e v ⋅ ⋅ T d e v = − 1 2 T i j d e v T j i d e v II_{T^{dev}}=-\frac{1}{2}Tr[(T^{dev})^2]=-\frac{1}{2}Tr[(T^{dev}\cdot T^{dev})]=-\frac{1}{2}T^{dev}\cdot \cdot T^{dev}=-\frac{1}{2}T_{ij}^{dev}T_{ji}^{dev} IITdev=21Tr[(Tdev)2]=21Tr[(TdevTdev)]=21TdevTdev=21TijdevTjidev

展开,得:
I I T d e v = − 1 2 [ ( T 11 d e v ) 2 + ( T 22 d e v ) 2 + ( T 33 d e v ) 2 + 2 ( T 12 d e v ) 2 + 2 ( T 13 d e v ) 2 + 2 ( T 23 d e v ) 2 ] II_{T^{dev}}=-\frac{1}{2}[(T_{11}^{dev})^2+(T_{22}^{dev})^2+(T_{33}^{dev})^2+2(T_{12}^{dev})^2+2(T_{13}^{dev})^2+2(T_{23}^{dev})^2] IITdev=21[(T11dev)2+(T22dev)2+(T33dev)2+2(T12dev)2+2(T13dev)2+2(T23dev)2]

变换一下:
T 11 d e v ) 2 + ( T 22 d e v ) 2 + ( T 33 d e v ) 2 = − 2 I I T d e v − 2 ( T 12 d e v ) 2 − 2 ( T 13 d e v ) 2 − 2 ( T 23 d e v ) 2 T_{11}^{dev})^2+(T_{22}^{dev})^2+(T_{33}^{dev})^2=-2II_{T^{dev}}-2(T_{12}^{dev})^2-2(T_{13}^{dev})^2-2(T_{23}^{dev})^2 T11dev)2+(T22dev)2+(T33dev)2=2IITdev2(T12dev)22(T13dev)22(T23dev)2

另外,在主空间的分量:
I I T d e v = − 1 2 T i j d e v T j i d e v = − 1 2 [ ( T 1 d e v ) 2 + ( T 2 d e v ) 2 + ( T 3 d e v ) 2 ] II_{T^{dev}}=-\frac{1}{2}T_{ij}^{dev}T_{ji}^{dev}=-\frac{1}{2}[(T_{1}^{dev})^2+(T_{2}^{dev})^2+(T_{3}^{dev})^2] IITdev=21TijdevTjidev=21[(T1dev)2+(T2dev)2+(T3dev)2]

或者:
在这里插入图片描述
或者:
在这里插入图片描述
I I T d e v = − 1 2 T i j d e v T j i d e v = − 1 2 [ ( T 1 d e v ) 2 + ( T 2 d e v ) 2 + ( T 3 d e v ) 2 ] II_{T^{dev}}=-\frac{1}{2}T_{ij}^{dev}T_{ji}^{dev}=-\frac{1}{2}[(T_{1}^{dev})^2+(T_{2}^{dev})^2+(T_{3}^{dev})^2] IITdev=21TijdevTjidev=21[(T1dev)2+(T2dev)2+(T3dev)2]代入到以上式子:
I I T d e v = − 1 6 [ ( T 22 d e v − T 33 d e v ) 2 + ( T 11 d e v − T 33 d e v ) 2 + ( T 11 d e v − T 22 d e v ) 2 ] − ( T 12 d e v ) 2 − ( T 23 d e v ) 2 − ( T 13 d e v ) 2 II_{T^{dev}}=-\frac{1}{6}[(T_{22}^{dev}-T_{33}^{dev})^2+(T_{11}^{dev}-T_{33}^{dev})^2+(T_{11}^{dev}-T_{22}^{dev})^2]-(T_{12}^{dev})^2-(T_{23}^{dev})^2-(T_{13}^{dev})^2 IITdev=61[(T22devT33dev)2+(T11devT33dev)2+(T11devT22dev)2](T12dev)2(T23dev)2(T13dev)2

如果在主空间,则:
I I T d e v = − 1 6 [ ( T 2 d e v − T 3 d e v ) 2 + ( T 1 d e v − T 3 d e v ) 2 + ( T 1 d e v − T 2 d e v ) 2 ] II_{T^{dev}}=-\frac{1}{6}[(T_{2}^{dev}-T_{3}^{dev})^2+(T_{1}^{dev}-T_{3}^{dev})^2+(T_{1}^{dev}-T_{2}^{dev})^2] IITdev=61[(T2devT3dev)2+(T1devT3dev)2+(T1devT2dev)2]

偏张量的第三不变量

偏张量的第三部变量:
在这里插入图片描述
另一个形式:
I I I T d e v = T 1 d e v T 2 d e v T 3 d e v = 1 3 T i j d e v T j k d e v T k l d e v III_{T^{dev}}=T_{1}^{dev}T_{2}^{dev}T_{3}^{dev}=\frac{1}{3}T_{ij}^{dev}T_{jk}^{dev}T_{kl}^{dev} IIITdev=T1devT2devT3dev=31TijdevTjkdevTkldev

问题1.39 σ \sigma σ是对称二阶张量, s = σ d e v s = \sigma^{dev} s=σdev是一个偏张量,证明: s : ∂ s ∂ σ = s s:\frac{\partial s}{\partial \sigma}=s s:σs=s,并证明 σ \sigma σ σ d e v \sigma^{dev} σdev是同轴张量

在这里插入图片描述
参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
连续介质力学讲义pdf是一本讲述连续介质力学理论和应用的电子书。连续介质力学是研究固体和流体等连续性物质力学性质的学科。这本讲义通过对连续介质的运动、力学和热力学性质进行全面的扩展和深入探讨,为读者提供了深入理解连续介质力学基本原理和相关应用的重要资源。 这本讲义首先介绍了连续介质力学的基本概念和基本假设,包括描述连续介质的宏观和微观性质的数学形式。然后,它详细讨论了连续介质的运动方程和应力张量的定义,介绍了力学平衡和不变性原理的应用。此外,还包含了流体连续介质力学的特殊情况,如不可压缩流体和可压缩流体的处理方法和基本方程。 讲义还介绍了弹性和塑性力学,探讨了弹性介质的应力-应变关系以及材料的本构关系。此外,它还包含了流变学的基本原理和流变体的力学性质。最后,该讲义还涵盖了热力学连续介质力学的耦合问题,讨论了热传导、对流和辐射传热等方面的基本原理。 总的来说,连续介质力学讲义pdf是一本全面而详尽的学习材料,涵盖了连续介质力学理论与应用的各个方面。它适用于从事力学研究和工程实践的学生、教师和工程师。无论是理论研究还是应用开发,这本讲义都能为读者提供所需的基础知识和工具,帮助他们更好地理解和应用连续介质力学
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值