(十 二)特殊的二阶张量——正交张量(一)

1. 正常正交张量与反常正交张量

定义 若二阶张量 Q \bold{Q} Q的逆张量与转置张量相等,则称 Q \bold{Q} Q正交张量,记作, Q ∈ O 3 \bold Q\in\mathcal{O}_3 QO3,即
Q − 1 = Q T \bold{Q}^{-1}=\bold{Q}^T Q1=QT
或者说
Q ∙ Q T = Q T ∙ Q = G \bold{Q}\bullet\bold{Q}^T=\bold{Q}^T\bullet\bold{Q}=\bold{G} QQT=QTQ=G
其对应的矩阵形式为:
Q 3 ( Q T ) 3 = ( Q T ) 3 Q 3 = E Q_3(Q^T)_3=(Q^T)_3Q_3=E Q3(QT)3=(QT)3Q3=E
由于
( Q T ) 3 = Q 2 ≠ ( Q 3 ) T (Q^T)_3=Q_2\ne (Q_3)^T (QT)3=Q2=(Q3)T
正交张量的矩阵一般不是正交矩阵。不过在笛卡尔坐标系中
( Q T ) 3 = Q 2 = ( Q 3 ) T (Q^T)_3=Q_2=(Q_3)^T (QT)3=Q2=(Q3)T
正交张量在笛卡尔坐标系中的分量构成的矩阵为正交矩阵(这与 τ 2 \tau_2 τ2定义方式无关,若采用黄克智-《张量分析》中的定义仍为正交矩阵)。由正交张量的定义可知:
d e t ( Q ∙ Q T ) = d e t ( Q ) d e t ( Q T ) = [ d e t ( Q ) ] 2 = d e t ( G ) = 1 det(\bold{Q}\bullet\bold{Q}^T)=det(\bold{Q})det(\bold{Q}^T)=[det(\bold{Q})]^2=det(G)=1 det(QQT)=det(Q)det(QT)=[det(Q)]2=det(G)=1
得到
d e t ( Q ) = ± 1 det(\bold{Q})=\pm1 det(Q)=±1
将行列式为 1 1 1的正交张量称作正常正交张量,记作 Q ∈ O 3 + \bold Q\in\mathcal{O}_3^+ QO3+;行列式为 − 1 -1 1的正交张量称作反常正交张量

2. 正交变换

将正交张量对应的线性变换称作正交变换。对于任意两向量 u ⃗ \vec{u} u v ⃗ \vec{v} v ,有:
( Q ∙ u ⃗ ) ∙ ( Q ∙ v ⃗ ) = ( u ⃗ ∙ Q T ) ∙ ( Q ∙ v ⃗ ) = ( u ⃗ ∙ Q − 1 ) ∙ ( Q ∙ v ⃗ ) = u ⃗ ∙ ( Q − 1 ∙ Q ) ∙ v ⃗ = u ⃗ ∙ ( G ∙ v ⃗ ) = u ⃗ ∙ v ⃗   ( u ⃗ ∙ Q ) ∙ ( v ⃗ ∙ Q ) = ( u ⃗ ∙ Q ) ∙ ( Q T ∙ v ⃗ ) = ( u ⃗ ∙ Q ) ∙ ( Q − 1 ∙ v ⃗ ) = u ⃗ ∙ ( Q ∙ Q − 1 ) ∙ v ⃗ = u ⃗ ∙ ( G ∙ v ⃗ ) = u ⃗ ∙ v ⃗ (\bold{Q}\bullet\vec{u})\bullet(\bold{Q}\bullet\vec{v})= (\vec{u}\bullet\bold{Q}^{T})\bullet(\bold{Q}\bullet\vec{v})= (\vec{u}\bullet\bold{Q}^{-1})\bullet(\bold{Q}\bullet\vec{v})= \vec{u}\bullet(\bold{Q}^{-1}\bullet\bold{Q})\bullet\vec{v}= \vec{u}\bullet(\bold{G}\bullet\vec{v})= \vec{u}\bullet\vec{v} \\\ \\ (\vec{u}\bullet\bold{Q})\bullet(\vec{v}\bullet\bold{Q})= (\vec{u}\bullet\bold{Q})\bullet(\bold{Q}^T\bullet\vec{v})= (\vec{u}\bullet\bold{Q})\bullet(\bold{Q}^{-1}\bullet\vec{v})= \vec{u}\bullet(\bold{Q}\bullet\bold{Q}^{-1})\bullet\vec{v}= \vec{u}\bullet(\bold{G}\bullet\vec{v})= \vec{u}\bullet\vec{v} (Qu )(Qv )=(u QT)(Qv )=(u Q1)(Qv )=u (Q1Q)v =u (Gv )=u v  (u Q)(v Q)=(u Q)(QTv )=(u Q)(Q1v )=u (QQ1)v =u (Gv )=u v
故,同种正交变换具有“保内积性”。反过来,若张量的线性变换具有保内积性,那么该变换为正交变换证明如下,由于
( Q ∙ u ⃗ ) ∙ ( Q ∙ v ⃗ ) = u ⃗ ∙ ( Q T ∙ Q ) ∙ v ⃗ = u ⃗ ∙ v ⃗   ( u ⃗ ∙ Q ) ∙ ( v ⃗ ∙ Q ) = u ⃗ ∙ ( Q ∙ Q T ) ∙ v ⃗ = u ⃗ ∙ v ⃗ (\bold{Q}\bullet\vec{u})\bullet(\bold{Q}\bullet\vec{v})= \vec{u}\bullet(\bold{Q}^{T}\bullet\bold{Q})\bullet\vec{v}= \vec{u}\bullet\vec{v}\\\ \\ (\vec{u}\bullet\bold{Q})\bullet(\vec{v}\bullet\bold{Q})= \vec{u}\bullet(\bold{Q}\bullet\bold{Q}^{T})\bullet\vec{v}= \vec{u}\bullet\vec{v} (Qu )(Qv )=u (QTQ)v =u v  (u Q)(v Q)=u (QQT)v =u v

u ⃗ ∙ ( Q T ∙ Q − G ) ∙ v ⃗ = 0 ⟺ ( Q i ∙ k Q ∙ j i − δ j k ) u k v j = 0   u ⃗ ∙ ( Q ∙ Q T − G ) ∙ v ⃗ = 0 ⟺ ( Q i ∙ k Q ∙ j i − δ j k ) u k v j = 0 \vec{u}\bullet(\bold{Q}^{T}\bullet\bold{Q}-\bold{G})\bullet\vec{v}=0 \Longleftrightarrow (Q^{\bullet k}_iQ^{i}_{\bullet j}-\delta^{k}_{j})u_kv^j=0\\\ \\ \vec{u}\bullet(\bold{Q}\bullet\bold{Q}^{T}-\bold{G})\bullet\vec{v}=0 \Longleftrightarrow (Q^{\bullet k}_iQ^{i}_{\bullet j}-\delta^{k}_{j})u_kv^j=0 u (QTQG)v =0(QikQjiδjk)ukvj=0 u (QQTG)v =0(QikQjiδjk)ukvj=0
u k , v j   ( k , j = 1 , 2 , 3 ) u_k,v^j\ (k,j=1,2,3) uk,vj (k,j=1,2,3) 的任意性知:
Q i ∙ k Q ∙ j i − δ j k = 0 ⟺ Q i ∙ k Q ∙ j i = δ j k ⟺ Q T ∙ Q = G Q^{\bullet k}_iQ^{i}_{\bullet j}-\delta^{k}_{j}=0 \Longleftrightarrow Q^{\bullet k}_iQ^{i}_{\bullet j}=\delta^{k}_{j} \Longleftrightarrow \bold{Q}^{T}\bullet\bold{Q}=\bold{G} QikQjiδjk=0QikQji=δjkQTQ=G
根据保内积的性质可以得到:正交变换将标准正交基映射为标准正交基。由于:
Q ∙ g ⃗ k = G ⃗ k = Q ∙ k i g ⃗ i   Q ∙ g ⃗ k = G ⃗ k = Q i ∙ k g ⃗ i \bold{Q}\bullet\vec{g}_k=\vec{\mathscr{G}}_k=Q^i_{\bullet k}\vec{g}_i \\\ \\ \bold{Q}\bullet\vec{g}^k=\vec{\mathscr{G}}^k=Q_i^{\bullet k}\vec{g}^i Qg k=G k=Qkig i Qg k=G k=Qikg i
其中, G ⃗ k \vec{\mathscr{G}}_k G k为通过正交变换得到的新协变基矢,而 G ⃗ k \vec{\mathscr{G}}^k G k为通过正交变换得到的新逆变基矢。则:
Q = ( Q ∙ k i g ⃗ i ) g ⃗ k = ( Q i ∙ k g ⃗ i ) g ⃗ k = G ⃗ k g ⃗ k = G ⃗ k g ⃗ k \bold{Q}=(Q^i_{\bullet k}\vec{g}_i)\vec{g}^k=(Q_i^{\bullet k}\vec{g}^i)\vec{g}_k=\vec{\mathscr{G}}_k\vec{g}^k=\vec{\mathscr{G}}^k\vec{g}_k Q=(Qkig i)g k=(Qikg i)g k=G kg k=G kg k
这意味着正交张量可表示为正交变换得到的新协(逆)变基矢与原逆(协)变基矢的并矢之和,需要注意的是新基矢在前,原基矢量在后。若取原基矢为标准正交基 { e ⃗ 1 , e ⃗ 2 , e ⃗ 3 } \{\vec{e}_1,\vec{e}_2,\vec{e}_3\} {e 1,e 2,e 3},则有: Q = E 1 ⃗ e ⃗ 1 + E 2 ⃗ e ⃗ 2 + E 3 ⃗ e ⃗ 3 \bold{Q}=\vec{\mathscr{E}_1}\vec{e}_1+\vec{\mathscr{E}_2}\vec{e}_2+\vec{\mathscr{E}_3}\vec{e}_3 Q=E1 e 1+E2 e 2+E3 e 3
其中, { E 1 ⃗ , E 2 ⃗ , E 3 ⃗ } \{\vec{\mathscr{E}_1},\vec{\mathscr{E}_2},\vec{\mathscr{E}_3}\} {E1 ,E2 ,E3 }为通过 Q \bold{Q} Q代表的正交变换得到的新标准正交基。那么:
c o s ( E i ⃗ , e ⃗ j ) = E i ⃗ ∙ e ⃗ j = ( Q ∙ e ⃗ i ) ∙ e ⃗ j = Q i j cos(\vec{\mathscr{E}_i},\vec{e}_j)=\vec{\mathscr{E}_i}\bullet\vec{e}_j=(\bold{Q}\bullet\vec{e}_i)\bullet\vec{e}_j=Q_{ij} cos(Ei ,e j)=Ei e j=(Qe i)e j=Qij
这说明,正交张量在原标准正交基中的分量 Q i j Q_{ij} Qij为原基矢量 e ⃗ i \vec{e}_i e i与新基矢量 E j ⃗ \vec{\mathscr{E}_j} Ej 夹角的方向余弦。对正交变换的几何意义进行分析,由于
[ G ⃗ 1 G ⃗ 2 G ⃗ 3 ] = d e t ( Q ) [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ]   [ G ⃗ 1 G ⃗ 2 G ⃗ 3 ] = d e t ( Q ) [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] \begin{bmatrix}\vec{\mathscr{G}}_1& \vec{\mathscr{G}}_2 & \vec{\mathscr{G}}_3\end{bmatrix} =det(\bold{Q})\begin{bmatrix}\vec{g}_1& \vec{g}_2 & \vec{g}_3\end{bmatrix} \\\ \\ \begin{bmatrix}\vec{\mathscr{G}}^1& \vec{\mathscr{G}}^2 & \vec{\mathscr{G}}^3\end{bmatrix} =det(\bold{Q})\begin{bmatrix}\vec{g}^1& \vec{g}^2 & \vec{g}^3\end{bmatrix} [G 1G 2G 3]=det(Q)[g 1g 2g 3] [G 1G 2G 3]=det(Q)[g 1g 2g 3]
对于正常正交张量,混合积 [ G ⃗ 1 G ⃗ 2 G ⃗ 3 ] \begin{bmatrix}\vec{\mathscr{G}}_1& \vec{\mathscr{G}}_2 & \vec{\mathscr{G}}_3\end{bmatrix} [G 1G 2G 3] [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] \begin{bmatrix}\vec{g}_1& \vec{g}_2 & \vec{g}_3\end{bmatrix} [g 1g 2g 3]同号,而对于反常正交张量混合积 [ G ⃗ 1 G ⃗ 2 G ⃗ 3 ] \begin{bmatrix}\vec{\mathscr{G}}_1& \vec{\mathscr{G}}_2 & \vec{\mathscr{G}}_3\end{bmatrix} [G 1G 2G 3] [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] \begin{bmatrix}\vec{g}_1& \vec{g}_2 & \vec{g}_3\end{bmatrix} [g 1g 2g 3]异号。结合正交变换的保内积性知:

  • 正常正交变换仅对应基的刚性转动,基之间的夹角与长度均不变;

  • 反常正交变换不仅对应于基的刚性转动,而且附加一次镜面反射的操作。

3. 正交张量的特征值

不妨设正交张量的特征值分别为:
λ 1 ∈ C 、 λ 2 ∈ C 、 λ 3 ∈ R \lambda_1\in\mathbf{C}、\lambda_2\in\mathbf{C}、\lambda_3\in\mathbf{R} λ1Cλ2Cλ3R

u ⃗ 1 ∈ C 3 、 u ⃗ 2 ∈ C 3 、 u ⃗ 3 ∈ R 3 \vec{u}_1\in\mathbf{C}^3、\vec{u}_2\in\mathbf{C}^3、\vec{u}_3\in\mathbf{R}^3 u 1C3u 2C3u 3R3
分别为其对应的特征向量,则有:
{ Q ∙ u ⃗ 1 = λ 1 u ⃗ 1 Q ∙ u ⃗ 2 = λ 2 u ⃗ 2 Q ∙ u ⃗ 3 = λ 3 u ⃗ 3 \begin{cases} \bold{Q}\bullet\vec{u}_1=\lambda_1\vec{u}_1\\ \\ \bold{Q}\bullet\vec{u}_2=\lambda_2\vec{u}_2 \\ \\ \bold{Q}\bullet\vec{u}_3=\lambda_3\vec{u}_3 \end{cases} Qu 1=λ1u 1Qu 2=λ2u 2Qu 3=λ3u 3
根据正交变换保内积的性质:
( Q ∙ u ⃗ 3 ) ∙ ( Q ∙ u ⃗ 3 ) = u ⃗ 3 ∙ u ⃗ 3 = ∣ u ⃗ 3 ∣ 2 = ( λ 3 u ⃗ 3 ) ∙ ( λ 3 u ⃗ 3 ) = λ 3 2 ∣ u ⃗ 3 ∣ 2 ⟹ ∣ λ 3 ∣ = 1 ( Q ∙ u ⃗ 1 ) ∙ ( Q ∙ u ⃗ 1 ) = u ⃗ 1 ∙ u ⃗ 1 = ( λ 1 u ⃗ 1 ) ∙ ( λ 1 u ⃗ 1 ) = λ 1 2 ( u ⃗ 1 ∙ u ⃗ 1 ) ⟹ ∣ λ 1 ∣ = 1 ( Q ∙ u ⃗ 2 ) ∙ ( Q ∙ u ⃗ 2 ) = u ⃗ 2 ∙ u ⃗ 2 = ( λ 2 u ⃗ 2 ) ∙ ( λ 2 u ⃗ 2 ) = λ 2 2 ( u ⃗ 2 ∙ u ⃗ 2 ) ⟹ ∣ λ 2 ∣ = 1 \begin{aligned} &(\bold{Q}\bullet\vec{u}_3)\bullet(\bold{Q}\bullet\vec{u}_3) =\vec{u}_3\bullet\vec{u}_3 =|\vec{u}_3|^2 =(\lambda_3\vec{u}_3)\bullet(\lambda_3\vec{u}_3) =\lambda_3^2|\vec{u}_3|^2 \Longrightarrow |\lambda_3|=1 \\ \\ &(\bold{Q}\bullet\vec{u}_1)\bullet(\bold{Q}\bullet\vec{u}_1) =\vec{u}_1\bullet\vec{u}_1 =(\lambda_1\vec{u}_1)\bullet(\lambda_1\vec{u}_1) =\lambda_1^2(\vec{u}_1\bullet\vec{u}_1) \Longrightarrow |\lambda_1|=1\\ \\ &(\bold{Q}\bullet\vec{u}_2)\bullet(\bold{Q}\bullet\vec{u}_2) =\vec{u}_2\bullet\vec{u}_2 =(\lambda_2\vec{u}_2)\bullet(\lambda_2\vec{u}_2) =\lambda_2^2(\vec{u}_2\bullet\vec{u}_2) \Longrightarrow |\lambda_2|=1 \end{aligned} (Qu 3)(Qu 3)=u 3u 3=u 32=(λ3u 3)(λ3u 3)=λ32u 32λ3=1(Qu 1)(Qu 1)=u 1u 1=(λ1u 1)(λ1u 1)=λ12(u 1u 1)λ1=1(Qu 2)(Qu 2)=u 2u 2=(λ2u 2)(λ2u 2)=λ22(u 2u 2)λ2=1
说明:正交张量的特征值模为1。又因为
d e t ( Q ) = λ 1 λ 2 λ 3 = ± 1 det(\bold{Q})=\lambda_1\lambda_2\lambda_3=\pm1 det(Q)=λ1λ2λ3=±1
则正交张量的特征值包括如下情况:

  • 若存在一对共轭复数特征值 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1λ2,则
    λ 1 λ 2 = ∣ λ 1 ∣ 2 = 1 \lambda_1\lambda_2=|\lambda_1|^2=1 λ1λ2=λ12=1
    那么:
    { λ 1 = e i ψ = c o s ψ + i   s i n ψ , λ 2 = e − i ψ = c o s ψ − i   s i n ψ , λ 3 = 1 ( Q 为正常正交张量 ) λ 1 = e i ψ = c o s ψ + i   s i n ψ , λ 2 = e − i ψ = c o s ψ − i   s i n ψ , λ 3 = − 1 ( Q 为反常正交张量 ) \begin{cases} \lambda_1=e^{i\psi}=cos\psi+i\ sin\psi,\lambda_2=e^{-i\psi}=cos\psi-i\ sin\psi,\lambda_3=1 & (\bold{Q}为正常正交张量)\\ \\ \lambda_1=e^{i\psi}=cos\psi+i\ sin\psi,\lambda_2=e^{-i\psi}=cos\psi-i\ sin\psi,\lambda_3=-1 & (\bold{Q}为反常正交张量) \end{cases} λ1=eiψ=cosψ+i sinψ,λ2=eiψ=cosψi sinψ,λ3=1λ1=eiψ=cosψ+i sinψ,λ2=eiψ=cosψi sinψ,λ3=1(Q为正常正交张量)(Q为反常正交张量)
    其中, s i n ψ ≠ 0 sin\psi\ne0 sinψ=0 ψ \psi ψ为负特征值的辐角。
  • 若特征值全为实数,则有四种情况:三个特征值全为 − 1 -1 1、三个特征值中除 − 1 -1 1外分别含有一、二、三个特征值为 1 1 1,不妨假定为:
    { λ 1 = ± 1 , λ 2 = ± 1 , λ 3 = 1 ( Q 为正常正交张量 ) λ 1 = ± 1 , λ 2 = ± 1 , λ 3 = − 1 ( Q 为反常正交张量 ) \begin{cases} \lambda_1=\pm1,\lambda_2=\pm1,\lambda_3=1 & (\bold{Q}为正常正交张量) \\ \\ \lambda_1=\pm1,\lambda_2=\pm1,\lambda_3=-1 & (\bold{Q}为反常正交张量) \end{cases} λ1=±1,λ2=±1,λ3=1λ1=±1,λ2=±1,λ3=1(Q为正常正交张量)(Q为反常正交张量)

4. 正交张量的特征向量

Nanson公式可知:
( Q ∙ u ⃗ ) × ( Q ∙ v ⃗ ) = d e t ( Q ) Q ∙ ( u ⃗ × v ⃗ ) ( a ) (\bold{Q}\bullet\vec{u})\times(\bold{Q}\bullet\vec{v})=det(\bold{Q})\bold{Q}\bullet(\vec{u}\times\vec{v})\qquad(a) (Qu )×(Qv )=det(Q)Q(u ×v )(a)

  • u ⃗ 1 \vec{u}_1 u 1 u ⃗ 2 \vec{u}_2 u 2为正交张量的复特征向量,则 u ⃗ 1 、 u ⃗ 2 、 u ⃗ 3 \vec{u}_1、\vec{u}_2、\vec{u}_3 u 1u 2u 3线性无关。 u ⃗ 1 × u ⃗ 2 ≠ 0 ⃗ \vec{u}_1\times\vec{u}_2\ne\vec{0} u 1×u 2=0 ,又 λ 1 λ 2 = 1 \lambda_1\lambda_2=1 λ1λ2=1,利用 ( a ) (a) (a)式:
    ( Q ∙ u ⃗ 1 ) × ( Q ∙ u ⃗ 2 ) = λ 1 λ 2 ( u ⃗ 1 × u ⃗ 2 ) = u ⃗ 1 × u ⃗ 2 = d e t ( Q ) Q ∙ ( u ⃗ 1 × u ⃗ 2 )   ⟹ Q ∙ ( u ⃗ 1 × u ⃗ 2 ) = d e t ( Q ) ( u ⃗ 1 × u ⃗ 2 ) (\bold{Q}\bullet\vec{u}_1)\times(\bold{Q}\bullet\vec{u}_2) =\lambda_1\lambda_2(\vec{u}_1\times\vec{u}_2) =\vec{u}_1\times\vec{u}_2 =det(\bold{Q})\bold{Q}\bullet(\vec{u}_1\times\vec{u}_2) \\\ \\ \Longrightarrow \bold{Q}\bullet(\vec{u}_1\times\vec{u}_2)=det(\bold{Q})(\vec{u}_1\times\vec{u}_2) (Qu 1)×(Qu 2)=λ1λ2(u 1×u 2)=u 1×u 2=det(Q)Q(u 1×u 2) Q(u 1×u 2)=det(Q)(u 1×u 2)
    说明 u ⃗ 1 × u ⃗ 2 \vec{u}_1\times\vec{u}_2 u 1×u 2 为正交张量实特征值所对应的一个特征向量。另外,在这种情况下,实特征值对应的特征空间维数为1,则应有:
    u ⃗ 1 × u ⃗ 2 = k u ⃗ 3 \vec{u}_1\times\vec{u}_2=k\vec{u}_3 u 1×u 2=ku 3
    其中, k k k为常数。那么
    u ⃗ 3 ∙ u ⃗ 1 = 0   u ⃗ 3 ∙ u ⃗ 2 = 0 \vec{u}_3\bullet\vec{u}_1=0\\\ \\\vec{u}_3\bullet\vec{u}_2=0 u 3u 1=0 u 3u 2=0
    即,若正交张量存在复特征值,则实特征值对应的特征向量分别与复特征值对应的特征向量正交
  • 若正交张量的特征值均为实特征值,此时特征值可能为二/三重特征根,下面分别进行讨论:
    (1) 正交张量含有二重实特征值,即: { λ 1 = − 1 , λ 2 = − 1 , λ 3 = 1 ( Q 为正常正交张量 ) λ 1 = 1 , λ 2 = 1 , λ 3 = − 1 ( Q 为反常正交张量 ) \begin{cases} \lambda_1=-1,\lambda_2=-1,\lambda_3=1 & (\bold{Q}为正常正交张量) \\ \\ \lambda_1=1,\lambda_2=1,\lambda_3=-1 & (\bold{Q}为反常正交张量) \end{cases} λ1=1,λ2=1,λ3=1λ1=1,λ2=1,λ3=1(Q为正常正交张量)(Q为反常正交张量)由于,二重特征值( u ⃗ 1 \vec{u}_1 u 1)与单重特征值( u ⃗ 3 \vec{u}_3 u 3)对应的特征向量总是线性无关的,即 u ⃗ 1 × u ⃗ 3 ≠ 0 \vec{u}_1\times\vec{u}_3\ne0 u 1×u 3=0,则:
    ( Q ∙ u ⃗ 1 ) × ( Q ∙ u ⃗ 3 ) = − ( u ⃗ 1 × u ⃗ 3 ) = d e t ( Q ) Q ∙ ( u ⃗ 1 × u ⃗ 3 )   ⟹ Q ∙ ( u ⃗ 1 × u ⃗ 3 ) = − d e t ( Q ) ( u ⃗ 1 × u ⃗ 3 ) = { − ( u ⃗ 1 × u ⃗ 3 ) ( Q 为正常正交张量 ) ( u ⃗ 1 × u ⃗ 3 ) ( Q 为反常正交张量 ) (\bold{Q}\bullet\vec{u}_1)\times(\bold{Q}\bullet\vec{u}_3) =-(\vec{u}_1\times\vec{u}_3) =det(\bold{Q})\bold{Q}\bullet(\vec{u}_1\times\vec{u}_3) \\\ \\ \Longrightarrow \bold{Q}\bullet(\vec{u}_1\times\vec{u}_3)=-det(\bold{Q})(\vec{u}_1\times\vec{u}_3) =\begin{cases} -(\vec{u}_1\times\vec{u}_3) & (\bold{Q}为正常正交张量) \\\\ (\vec{u}_1\times\vec{u}_3) & (\bold{Q}为反常正交张量) \end{cases} (Qu 1)×(Qu 3)=(u 1×u 3)=det(Q)Q(u 1×u 3) Q(u 1×u 3)=det(Q)(u 1×u 3)= (u 1×u 3)(u 1×u 3)(Q为正常正交张量)(Q为反常正交张量)
    这说明,对于正交张量的二重实特征值 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2,我们总可以找寻到两个线性无关的特征向量 u ⃗ 1 \vec{u}_1 u 1 u ⃗ 1 × u ⃗ 3 ≜ u ⃗ 2 \vec{u}_1\times\vec{u}_3\triangleq\vec{u}_2 u 1×u 3u 2,换而言之,正交张量二重特征值的几何重数为二。下面继续证明:正交张量单重实特征值对应的特征空间与二重实特征值所对应的特征向量所张成的特征空间相正交
    \quad
    对重特征值 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2,任取两个线性无关的特征向量 u ⃗ 1 \vec{u}_1 u 1 u ⃗ 2 \vec{u}_2 u 2,即 u ⃗ 1 × u ⃗ 2 ≠ 0 \vec{u}_1\times\vec{u}_2\ne0 u 1×u 2=0,则:
    ( Q ∙ u ⃗ 1 ) × ( Q ∙ u ⃗ 2 ) = ( u ⃗ 1 × u ⃗ 2 ) = d e t ( Q ) Q ∙ ( u ⃗ 1 × u ⃗ 2 )   ⟹ Q ∙ ( u ⃗ 1 × u ⃗ 2 ) = d e t ( Q ) ( u ⃗ 1 × u ⃗ 2 ) = { ( u ⃗ 1 × u ⃗ 2 ) ( Q 为正常正交张量 ) − ( u ⃗ 1 × u ⃗ 2 ) ( Q 为反常正交张量 ) (\bold{Q}\bullet\vec{u}_1)\times(\bold{Q}\bullet\vec{u}_2) =(\vec{u}_1\times\vec{u}_2) =det(\bold{Q})\bold{Q}\bullet(\vec{u}_1\times\vec{u}_2) \\\ \\ \Longrightarrow \bold{Q}\bullet(\vec{u}_1\times\vec{u}_2)=det(\bold{Q})(\vec{u}_1\times\vec{u}_2) =\begin{cases} (\vec{u}_1\times\vec{u}_2) & (\bold{Q}为正常正交张量) \\\\ -(\vec{u}_1\times\vec{u}_2) & (\bold{Q}为反常正交张量) \end{cases} (Qu 1)×(Qu 2)=(u 1×u 2)=det(Q)Q(u 1×u 2) Q(u 1×u 2)=det(Q)(u 1×u 2)= (u 1×u 2)(u 1×u 2)(Q为正常正交张量)(Q为反常正交张量)
    表明矢量 u ⃗ 1 × u ⃗ 2 \vec{u}_1\times\vec{u}_2 u 1×u 2为正交张量单重实特征值 λ 3 \lambda_3 λ3的特征向量,由于单特征值的几何重数为一,故应有: u ⃗ 1 × u ⃗ 2 = k u ⃗ 3 \vec{u}_1\times\vec{u}_2=k\vec{u}_3 u 1×u 2=ku 3
    其中, k k k为某个常数。这也表明了单特征值的特征向量的确与二重特征值的特征向量相正交。
    (2) 正交张量有三重实特征值,即:
    { λ 1 = 1 , λ 2 = 1 , λ 3 = 1 ( Q 为正常正交张量 ) λ 1 = − 1 , λ 2 = − 1 , λ 3 = − 1 ( Q 为反常正交张量 ) \begin{cases} \lambda_1=1,\lambda_2=1,\lambda_3=1 & (\bold{Q}为正常正交张量) \\ \\ \lambda_1=-1,\lambda_2=-1,\lambda_3=-1 & (\bold{Q}为反常正交张量) \end{cases} λ1=1,λ2=1,λ3=1λ1=1,λ2=1,λ3=1(Q为正常正交张量)(Q为反常正交张量)
    首先,根据式 ( ∗ ) (*) ()可以推出:正交张量三重特征值的几何重数为三。采用反证法进行说明:
    \quad
    假设三重特征值的几何重数为二,则可寻找到三重特征值的两个线性无关特征向量 u ⃗ 1 \vec{u}_1 u 1 u ⃗ 2 \vec{u}_2 u 2,即 u ⃗ 1 × u ⃗ 2 ≠ 0 \vec{u}_1\times\vec{u}_2\ne0 u 1×u 2=0,则:
    ( Q ∙ u ⃗ 1 ) × ( Q ∙ u ⃗ 2 ) = ( u ⃗ 1 × u ⃗ 2 ) = d e t ( Q ) Q ∙ ( u ⃗ 1 × u ⃗ 2 )   ⟹ Q ∙ ( u ⃗ 1 × u ⃗ 2 ) = d e t ( Q ) ( u ⃗ 1 × u ⃗ 2 ) = { ( u ⃗ 1 × u ⃗ 2 ) ( Q 为正常正交张量 ) − ( u ⃗ 1 × u ⃗ 2 ) ( Q 为反常正交张量 ) (\bold{Q}\bullet\vec{u}_1)\times(\bold{Q}\bullet\vec{u}_2) =(\vec{u}_1\times\vec{u}_2) =det(\bold{Q})\bold{Q}\bullet(\vec{u}_1\times\vec{u}_2) \\\ \\ \Longrightarrow \bold{Q}\bullet(\vec{u}_1\times\vec{u}_2)=det(\bold{Q})(\vec{u}_1\times\vec{u}_2) =\begin{cases} (\vec{u}_1\times\vec{u}_2) & (\bold{Q}为正常正交张量) \\\\ -(\vec{u}_1\times\vec{u}_2) & (\bold{Q}为反常正交张量) \end{cases} (Qu 1)×(Qu 2)=(u 1×u 2)=det(Q)Q(u 1×u 2) Q(u 1×u 2)=det(Q)(u 1×u 2)= (u 1×u 2)(u 1×u 2)(Q为正常正交张量)(Q为反常正交张量)
    u ⃗ 1 × u ⃗ 2 \vec{u}_1\times\vec{u}_2 u 1×u 2 也为三重特征值的一个特征向量,又 u ⃗ 1 \vec{u}_1 u 1 u ⃗ 2 \vec{u}_2 u 2 u ⃗ 1 × u ⃗ 2 \vec{u}_1\times\vec{u}_2 u 1×u 2 线性无关,这与假设相矛盾。
    \quad
    假设三重特征值的几何重数为一,那么正交张量可展开为Jordan标准形:
    Q = d e t ( Q ) ( g ⃗ 1 g ⃗ 1 + g ⃗ 1 g ⃗ 2 + g ⃗ 2 g ⃗ 2 + g ⃗ 2 g ⃗ 3 + g ⃗ 3 g ⃗ 3 ) \bold Q=det(Q)(\vec{g}_1\vec{g}^1+\vec{g}_1\vec{g}^2+\vec{g}_2\vec{g}^2+\vec{g}_2\vec{g}^3+\vec{g}_3\vec{g}^3) Q=det(Q)(g 1g 1+g 1g 2+g 2g 2+g 2g 3+g 3g 3)
    则:
    { Q ∙ g ⃗ 1 = g ⃗ 1 Q ∙ g ⃗ 2 = g ⃗ 1 + g ⃗ 2 Q ∙ g ⃗ 3 = g ⃗ 2 + g ⃗ 3 \begin{cases} \bold Q\bullet\vec{g}_1=\vec{g}_1\\\\ \bold Q\bullet\vec{g}_2=\vec{g}_1+\vec{g}_2\\\\ \bold Q\bullet\vec{g}_3=\vec{g}_2+\vec{g}_3 \end{cases} Qg 1=g 1Qg 2=g 1+g 2Qg 3=g 2+g 3
    那么,
    ( Q ∙ g ⃗ 1 ) × ( Q ∙ g ⃗ 2 ) = g ⃗ 1 × ( g ⃗ 1 + g ⃗ 2 ) = ( g ⃗ 1 × g ⃗ 2 ) = d e t ( Q ) Q ∙ ( g ⃗ 1 × g ⃗ 2 )   ⟹ Q ∙ ( g ⃗ 1 × g ⃗ 2 ) = d e t ( Q ) ( g ⃗ 1 × g ⃗ 2 ) (\bold{Q}\bullet\vec{g}_1)\times(\bold{Q}\bullet\vec{g}_2) =\vec{g}_1\times(\vec{g}_1+\vec{g}_2) =(\vec{g}_1\times\vec{g}_2) =det(\bold{Q})\bold{Q}\bullet(\vec{g}_1\times\vec{g}_2) \\\ \\ \Longrightarrow \bold{Q}\bullet(\vec{g}_1\times\vec{g}_2)=det(\bold{Q})(\vec{g}_1\times\vec{g}_2) (Qg 1)×(Qg 2)=g 1×(g 1+g 2)=(g 1×g 2)=det(Q)Q(g 1×g 2) Q(g 1×g 2)=det(Q)(g 1×g 2)
    由于, g ⃗ 1 \vec{g}_1 g 1 g ⃗ 2 \vec{g}_2 g 2 线性无关,则 g ⃗ 1 × g ⃗ 2 ≠ 0 \vec{g}_1\times\vec{g}_2\ne0 g 1×g 2=0 ,并且上式还表明矢量 g ⃗ 1 × g ⃗ 2 \vec{g}_1\times\vec{g}_2 g 1×g 2 应为与正交张量三重特征值对应的和 g ⃗ 1 \vec{g}_1 g 1 线性无关的另一特征向量,与假设矛盾。(证毕)

综上所述,正交张量特征向量的性质包括:

(1) 共轭复特征值 λ 1 = λ ˉ 2 \lambda_1=\bar{\lambda}_2 λ1=λˉ2 + 实特征值 λ 3 \lambda_3 λ3 u ⃗ 3 ∙ u ⃗ 1 = u ⃗ 3 ∙ u ⃗ 2 = 0 \vec{u}_3\bullet\vec{u}_1=\vec{u}_3\bullet\vec{u}_2=0 u 3u 1=u 3u 2=0

(2) 二重实特征值 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2 + 实特征值 λ 3 \lambda_3 λ3 u ⃗ 3 ∙ u ⃗ 1 = u ⃗ 3 ∙ u ⃗ 2 = 0 \vec{u}_3\bullet\vec{u}_1=\vec{u}_3\bullet\vec{u}_2=0 u 3u 1=u 3u 2=0

(3) 三重实特征值 λ 1 = λ 2 = λ 3 \lambda_1=\lambda_2=\lambda_3 λ1=λ2=λ3:任意向量均为正交张量的主方向;

且正交张量的几何重数必定等于其代数重数。

定理:正交仿射量同一特征值对应的左、右特征空间相同。

证明如下:设正交仿射量 Q \bold Q Q的特征值与右特征向量分别为 λ \lambda λ r ⃗ \vec{r} r ,即
Q ∙ r ⃗ = λ r ⃗ \bold Q\bullet\vec{r}=\lambda\vec{r} Qr =λr
那么
( λ Q T ) ∙ ( Q ∙ r ⃗ ) = λ 2 ( Q T ∙ r ⃗ ) = Q T ∙ r ⃗ = r ⃗ ∙ Q = λ r ⃗ ( 证毕 ) (\lambda\bold Q^T)\bullet(\bold Q\bullet\vec{r})=\lambda^2(\bold Q^T\bullet\vec{r})=\bold Q^T\bullet\vec{r}=\vec{r}\bullet\bold Q=\lambda\vec{r}\quad(证毕) (λQT)(Qr )=λ2(QTr )=QTr =r Q=λr (证毕)

推论: Q \bold Q Q Q T \bold Q^T QT 有相同的特征值与特征空间。

证明:由于任何互为转置的张量具有相同的特征值,且对同一特征值, Q \bold Q Q 的左特征向量为 Q T \bold Q^T QT 的右特征向量,而正交张量左右特征空间相同,故得证。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值