(二十二)张量场函数的散度与旋度

1. 不变性微分算子

Hamilton 算子(Nabla 算子)又称作不变性微分算子,这是因为它对张量场所作微分运算的形式不随坐标系的改变而改变,如:在不同坐标系 { X i ′ − G ⃗ i ′ } \{\mathscr{X}^{i'}-\vec{\mathscr{G}}_{i'}\} {XiG i} { x i − g ⃗ i } \{x^i-\vec{g}_i\} {xig i} 中计算张量的梯度
▽ T = G ⃗ i ′ ∂ T ∂ X i ′ = G ⃗ i ′ ( ∂ T ∂ x j ∂ x j ∂ X i ′ ) = ( ∂ x j ∂ X i ′ G ⃗ i ′ ) ∂ T ∂ x j = ( β i ′ j G ⃗ i ′ ) ∂ T ∂ x j = g ⃗ j ∂ T ∂ x j \bigtriangledown\bold T =\vec{\mathscr{G}}^{i'}\dfrac{\partial\bold T}{\partial\mathscr{X}^{i'}} =\vec{\mathscr{G}}^{i'}\left(\dfrac{\partial\bold T}{\partial x^j}\frac{{\partial x^j}}{\partial\mathscr{X}^{i'}}\right) =\left(\frac{{\partial x^j}}{\partial\mathscr{X}^{i'}}\vec{\mathscr{G}}^{i'}\right)\dfrac{\partial\bold T}{\partial x^j} =(\beta^{j}_{i'}\vec{\mathscr{G}}^{i'})\dfrac{\partial\bold T}{\partial x^j} =\vec{g}^j\dfrac{\partial\bold T}{\partial x^j} T=G iXiT=G i(xjTXixj)=(XixjG i)xjT=(βijG i)xjT=g jxjT

2. 散度

对于 r ( r ≥ 1 ) r(r\ge 1) r(r1) 阶张量场 T \bold T T,定义:
左散度: ▽ ⋅ T ≜ g ⃗ i ⋅ ∂ T ∂ x i ≜ d i v T   右散度: T ⋅ ▽ ≜ ∂ T ∂ x i ⋅ g ⃗ i 左散度:\bigtriangledown\cdot\bold{T}\triangleq\vec{g}^i\cdot\frac{\partial \bold T}{\partial x^i}\triangleq div\bold T\\\ \\ 右散度:\bold{T}\cdot\bigtriangledown\triangleq\frac{\partial \bold T}{\partial x^i}\cdot\vec{g}^i 左散度:Tg ixiTdivT 右散度:TxiTg i
显然,一般
▽ ⋅ T ≠ T ⋅ ▽ \bigtriangledown\cdot\bold{T}\ne\bold{T}\cdot\bigtriangledown T=T
举例:

  • 向量场的散度:
    ▽ ⋅ v ⃗ = v ⃗ ⋅ ▽ = v ; i i = v , i i + v j Γ i j i = v , i i + 1 g ∂ g ∂ x j v j = 1 g ∂ ( g v j ) ∂ x j \bigtriangledown\cdot\vec{v}=\vec{v}\cdot\bigtriangledown=v^i_{;i} =v^i_{,i}+v^j\Gamma_{ij}^{i} =v^i_{,i}+\dfrac{1}{\sqrt{g}}\dfrac{\partial\sqrt{g}}{\partial x^j}v^j =\dfrac{1}{\sqrt{g}}\dfrac{\partial(\sqrt{g}v^j)}{\partial x^j} v =v =v;ii=v,ii+vjΓiji=v,ii+g 1xjg vj=g 1xj(g vj)
  • 二阶张量场的散度:
    ▽ ⋅ A = A ; i i j g ⃗ j = A ∙ j i ∣ ; i g ⃗ j   A ⋅ ▽ = A ; j i j g ⃗ i = A i ∙ j ∣ ; j g ⃗ i \bigtriangledown\cdot\bold{A}=A^{ij}_{;i}\vec{g}_j=A_{\bullet j}^{i}|_{;i}\vec{g}^{j}\\\ \\ \bold{A}\cdot\bigtriangledown=A^{ij}_{;j}\vec{g}_i=A^{\bullet j}_{i}|_{;j}\vec{g}^{i} A=A;iijg j=Aji;ig j A=A;jijg i=Aij;jg i
    通过上式可知:对称二阶张量的左右散度相等
  • 三阶张量场的散度:
    ▽ ⋅ T = A ; i i j k g ⃗ j g ⃗ k   A ⋅ ▽ = A ; j i k j g ⃗ i g ⃗ k \bigtriangledown\cdot\bold{T}=A^{ijk}_{;i}\vec{g}_j\vec{g}_k\\\ \\ \bold{A}\cdot\bigtriangledown=A^{ikj}_{;j}\vec{g}_i\vec{g}_k T=A;iijkg jg k A=A;jikjg ig k

书写规则:

  • 由于梯度点乘时总是自带逆变基,因此为方便点积,将张量分量靠近Nabla 算子的指标取为逆变指标,从而省去度量张量的分量;
  • 张量分量靠近Nabla 算子的指标与协变导数的坐标指标相同,其余指标与基向量的指标形成哑指标。

3. 旋度

对于 r ( r ≥ 1 ) r(r\ge 1) r(r1) 阶张量场 T \bold T T,定义:
左散度: ▽ × T ≜ g ⃗ i × ∂ T ∂ x i ≜ c u r l T = ϵ : ( ▽ T )   右散度: T × ▽ ≜ ∂ T ∂ x i × g ⃗ i = ( T ▽ ) : ϵ 左散度:\bigtriangledown\times\bold{T}\triangleq\vec{g}^i\times\frac{\partial \bold T}{\partial x^i}\triangleq curl\bold T=\epsilon:(\bigtriangledown\bold{T})\\\ \\ 右散度:\bold{T}\times\bigtriangledown\triangleq\frac{\partial \bold T}{\partial x^i}\times\vec{g}^i=(\bold{T}\bigtriangledown):\epsilon 左散度:×Tg i×xiTcurlT=ϵ:(T) 右散度:T×xiT×g i=(T):ϵ
显然,一般
▽ × T ≠ T × ▽ \bigtriangledown\times\bold{T}\ne\bold{T}\times\bigtriangledown ×T=T×
举例:矢量场的旋度
▽ × v ⃗ = v j ; i ϵ i j k g ⃗ k = ( v j , i − v m Γ j i m ) ϵ i j k g ⃗ k = v j , i ϵ i j k g ⃗ k = 1 g ∣ g ⃗ 1 g ⃗ 2 g ⃗ 3 ∂ ∂ x 1 ∂ ∂ x 2 ∂ ∂ x 3 v 1 v 2 v 3 ∣   v ⃗ × ▽ = v j ; i ϵ j i k g ⃗ k = − ▽ × v ⃗ \bigtriangledown\times\vec{v}=v_{j;i}\epsilon^{ijk}\vec{g}_k =(v_{j,i}-v_m\Gamma^m_{ji})\epsilon^{ijk}\vec{g}_k =v_{j,i}\epsilon^{ijk}\vec{g}_k =\frac{1}{\sqrt{g}}\begin{vmatrix} \vec{g}_1 & \vec{g}_2 & \vec{g}_3 \\\\ \dfrac{\partial}{\partial x^1} & \dfrac{\partial}{\partial x^2} & \dfrac{\partial}{\partial x^3} \\\\ v_1 & v_2 & v_3 \end{vmatrix}\\\ \\ \vec{v}\times\bigtriangledown=v_{j;i}\epsilon^{jik}\vec{g}_k=-\bigtriangledown\times\vec{v} ×v =vj;iϵijkg k=(vj,ivmΓjim)ϵijkg k=vj,iϵijkg k=g 1 g 1x1v1g 2x2v2g 3x3v3  v ×=vj;iϵjikg k=×v

书写规则:

  • 由于梯度点乘时总是自带逆变基,为方便叉积,将张量分量靠近Nabla 算子的指标取为协变指标,从而省去度量张量的分量;
  • 旋度的分量由协变导数与置换张量的逆变分量组成。

命题 给定向量场 v ⃗ \vec{v} v ,则反对称张量场
1 2 ( v ⃗ ▽ − ▽ v ⃗ ) , 1 2 ( − v ⃗ ▽ + ▽ v ⃗ ) \dfrac{1}{2}(\vec{v}\bigtriangledown-\bigtriangledown\vec{v}),\dfrac{1}{2}(-\vec{v}\bigtriangledown+\bigtriangledown\vec{v}) 21(v v )21(v +v )
的对偶矢量分别为:
ω ⃗ 1 = 1 2 ( ▽ × v ⃗ ) , ω ⃗ 2 = 1 2 ( v ⃗ × ▽ ) \vec{\omega}_1=\dfrac{1}{2}(\bigtriangledown\times\vec{v}),\vec{\omega}_2=\dfrac{1}{2}(\vec{v}\times\bigtriangledown) ω 1=21(×v )ω 2=21(v ×)

证明如下:
ω ⃗ = − 1 4 ϵ : ( v ⃗ ▽ − ▽ v ⃗ )    = − 1 4 ( v ⃗ × ▽ − ▽ × v ⃗ )    = 1 2 ▽ × v ⃗ \begin{aligned} &\vec{\omega}=-\dfrac{1}{4}\epsilon:(\vec{v}\bigtriangledown-\bigtriangledown\vec{v})\\\\ &\ \ =-\dfrac{1}{4}(\vec{v}\times\bigtriangledown-\bigtriangledown\times\vec{v})\\\\ &\ \ =\dfrac{1}{2}\bigtriangledown\times\vec{v} \end{aligned} ω =41ϵ:(v v )  =41(v ××v )  =21×v

4. Laplace 算子

定义 r ( r ≥ 1 ) r(r\ge 1) r(r1) 阶张量场 T \bold T T 的Laplace 算子:
▽ 2 T = ▽ ⋅ ( ▽ T ) = d i v ( g r a d T ) \bigtriangledown^2\bold T=\bigtriangledown\cdot(\bigtriangledown \bold T)=div(grad\bold T) 2T=(T)=div(gradT)
▽ 2 T = 0 \bigtriangledown^2\bold T=0 2T=0 则称 T \bold T T 是调和的

举例:标量场的Laplace 算子
▽ 2 ϕ = ▽ ⋅ ( ▽ ϕ ) = ▽ ⋅ ( ϕ , i g ⃗ i )   = g i j ( ϕ , i ) ; j = g i j ( ϕ , i j − ϕ , m Γ i j m )   = ( g i j ϕ , i ) ; j = ( g i j ϕ , i ) , j + g i m ϕ , i Γ m j j   = ( g i m ϕ , i ) , m + g i m ϕ , i 1 g ∂ g ∂ x m = 1 g ∂ ( g g i m ϕ , i ) ∂ x m \begin{aligned} &\bigtriangledown^2\phi=\bigtriangledown\cdot(\bigtriangledown\phi)=\bigtriangledown\cdot(\phi_{,i}\vec{g}^i)\\\\ &\quad\quad\ =g^{ij}(\phi_{,i})_{;j}=g^{ij}(\phi_{,ij}-\phi_{,m}\Gamma^m_{ij})\\\\ &\quad\quad\ =(g^{ij}\phi_{,i})_{;j}=(g^{ij}\phi_{,i})_{,j}+g^{im}\phi_{,i}\Gamma^j_{mj}\\\\ &\quad\quad\ =(g^{im}\phi_{,i})_{,m}+g^{im}\phi_{,i}\frac{1}{\sqrt{g}}\frac{\partial \sqrt{g}}{\partial x^m}=\frac{1}{\sqrt{g}}\frac{\partial (\sqrt{g}g^{im}\phi_{,i})}{\partial x^m} \end{aligned} 2ϕ=(ϕ)=(ϕ,ig i) =gij(ϕ,i);j=gij(ϕ,ijϕ,mΓijm) =(gijϕ,i);j=(gijϕ,i),j+gimϕ,iΓmjj =(gimϕ,i),m+gimϕ,ig 1xmg =g 1xm(g gimϕ,i)

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值