雷达信号中的快时间和慢时间,不同维度的定义

看了一些网站的博客,发现对快时间和慢时间的理解都是把理论搬过来,没有做一些自己的思考理解,不便于理解,同时一些视频网站也缺少这方面的可视化的讲解。刚好在博客网上看到一篇不错的博客,遂将其搬到CSDN上,以供有需之士理解。

转载网址:雷达信号处理基础-快时间维和慢时间维 - 少年π - 博客园

首先理解在两个时间维度上的快慢采样。

对于一个脉冲雷达,其发射的周期性脉冲序列 (这样的周期我们将之定义为脉冲重复间隔/周期(PRI/PRT) ),我们将每个脉冲序列的接收回波分别按行存储,例如第一个脉冲的接收回波被放置在第一行,同样的第二个脉冲的接收回波则被放置在第二行,以此类推。这样的存储方法为理解信号处理的过程奠定了很好的基础模型,因此,我们将按照行的方向看过去的维度定义为快时间维度。每一行都对应着一个周期脉冲序列。通过对快时间维数据进行距离 FFT,可用于提取目标的距离信息。

另外,由于行与行之间的数据采样间隔往往是大于脉冲持续时间,所以将按照列的方向看过去的维度定义为慢时间维度。第n列对应着全部脉冲序列在n时刻的数值大小。通过对慢时间维数据进行速度 FFT,可用于提取目标的速度信息。

下面需要思考的问题是,对于接收的单脉冲回波应当以多快的速度进行采样?即快时间维的采样率? 对于整个脉冲串回波即慢时间维,又是如何采样的?

对于快时间维的采样率,因为距离维的接收信号可以看作是距离向反射率函数与发送波形调制函数的卷积。也即是快时间维接收信号的带宽受到发射脉冲带宽的限制。因此,快时间维度的奈奎斯特采样率为发射脉冲的带宽。即

因此,采样间隔

因此,脉冲雷达的距离单元间隔(也就是距离分辨率)为

进一步的有

值得注意的是,连续波雷达(包括采用步进频信号的穿墙雷达和采用线性调频信号的毫米波雷达)的距离分辨率也为上式。因此,对于所有的雷达体制,距离分辨率的表达式都是上式。

而关于发射脉冲的带宽B,这里需要说明下。显然在时域中,单个脉冲是时限信号。如果单个脉冲是时长为tao的正弦信号,那么对应频谱为sinc函数。那么其带宽B一般表达为3dB带宽:0.89/tao Hz, 或者瑞丽带宽:1/tao Hz, 或者第一零点间带宽2/tao Hz。也就是说单个脉冲的长度确定了,那么其信号的有效带宽就确定了。这里需要说明下的是,是因为正弦信号被截断了,变成了时限信号,因此其不再是单频点信号,而是一个具有带宽的信号。

另外,对于慢时间维度的采样率,实际就是信号的脉冲重复频率(PRF),显然有

假如我们采集了M个脉冲串,采集数据需要的时间为M·PRI,通常把这个时间称为相参处理时间(CPI),因此CPI即表示相参处理时间,也表示采集得到的二维数据矩阵。

当雷达和被检测目标之间存在相对运动时,连续回波的相位会随着样本不断变化,即慢时间维度的信号会具有非零的多普勒带宽。因此,选择脉冲重复间隔的关键是避免由频谱搬移所造成的混叠而保留多普勒谱信息。其中的非零多普勒带宽存在两个来源,一个是探测区域内物体的运动,另外一个是雷达的运动。如果探测区域是我们常见的交通场景,那么目标的运动即有可能为交通工具的运动。如果探测的区域是一般的杂波区域,这个时候的运动可能就是来自草或者树叶随风飘动,海浪摆动,下落的雨滴等等。在慢时间轴上的奈奎斯特采样率的要求就是脉冲重复频率PRF至少等于慢时间信号的带宽。而慢时间信号的带宽是多普勒带宽。多普勒带宽是近似为平台运动产生的带宽和被测场景自身带宽的和。也就是说多普勒带宽取决于目标和雷达的相对运动速度。因此慢时间信号所选择的(或者说所设计的)PRF不应该小于这个多普勒带宽,以满足奈奎斯特采样定理。

上面这段话也表明了对于一个雷达系统,脉冲重复频率PRF决定了系统的测速性能。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京深圳在总指数中名列前茅,分别以91.2684.53的得分领先,展现出强大的资金投入、创新能力基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求技术进步共同推动了低空经济的速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业研究人员。 使用场景及目标:①了解低空经济的定义、分类发展驱动力;②掌握低空经济的主要应用场景市场规模预测;③评估各城市在低空经济发展中的表现潜力;④为政策制定、投资决策企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设区域融合错位的重要性,提出了加强法律法规建设、人才储备基础设施建设等建议。低空经济正加速向网络化、智能化、规模化集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练验证深度学习模型,以实现脑肿瘤的检测分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值