# NNDL第三次作业

## 作业

### 代码实现

#### 代码

'''
torch版本
'''
# -*- coding: utf-8 -*-
# @Time : 2022-10-01 12:11
# @Author : Mr.Liu
# @Email : 2781700291@qq.com
# @File : torch版本.py
# @ProjectName: python
# https://blog.csdn.net/qq_41033011/article/details/109325070
# torch.nn.Sigmoid(h_in)

import torch

x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值：x1, x2；真实输出值：y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
[0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值

def sigmoid(z):
a = 1 / (1 + torch.exp(-z))
return a

def forward_propagate(x1, x2):
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)
print("out_h1 {}".format(out_h2))
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

print("正向计算：o1 ,o2")
print(out_o1.data, out_o2.data)

return out_o1, out_o2

def loss_fuction(x1, x2, y1, y2):  # 损失函数
y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 ： t.nn.MSELoss()
print("损失函数（均方误差）：", loss.item())
return loss

def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 1
w1.data = w1.data - step * w1.grad.data
w2.data = w2.data - step * w2.grad.data
w3.data = w3.data - step * w3.grad.data
w4.data = w4.data - step * w4.grad.data
w5.data = w5.data - step * w5.grad.data
w6.data = w6.data - step * w6.grad.data
w7.data = w7.data - step * w7.grad.data
w8.data = w8.data - step * w8.grad.data
return w1, w2, w3, w4, w5, w6, w7, w8

if __name__ == "__main__":

print("=====更新前的权值=====")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

for i in range(1):
print("=====第" + str(i) + "轮=====")
L = loss_fuction(x1, x2, y1, y2)  # 前向传播，求 Loss，构建计算图
L.backward()  # 自动求梯度，不需要人工编程实现。反向传播，求出计算图中所有梯度存入w中
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

print("更新后的权值")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

'''
numpy
''''
# -*- coding: utf-8 -*-
# @Time : 2022-10-01 12:10
# @Author : Mr.Liu
# @Email : 2781700291@qq.com
# @File : NNDL作业.py
# @ProjectName: python
import numpy as np

def sigmoid(z):
a = 1 / (1 + np.exp(-z))
return a

def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
in_h1 = w1 * x1 + w3 * x2
out_h1 = sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = sigmoid(in_h2)

in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = sigmoid(in_o2)

print("正向计算：o1 ,o2")
print(round(out_o1, 5), round(out_o2, 5))

error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

print("损失函数：均方误差")
print(round(error, 5))

return out_o1, out_o2, out_h1, out_h2

def back_propagate(out_o1, out_o2, out_h1, out_h2):
# 反向传播
d_o1 = out_o1 - y1
d_o2 = out_o2 - y2
# print(round(d_o1, 2), round(d_o2, 2))

d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
# print(round(d_w5, 2), round(d_w7, 2))
d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
# print(round(d_w6, 2), round(d_w8, 2))

d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
# print(round(d_w1, 2), round(d_w3, 2))

d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2
# print(round(d_w2, 2), round(d_w4, 2))
print("反向传播：误差传给每个权值")
print(round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
round(d_w7, 5), round(d_w8, 5))

return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8

def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 5
w1 = w1 - step * d_w1
w2 = w2 - step * d_w2
w3 = w3 - step * d_w3
w4 = w4 - step * d_w4
w5 = w5 - step * d_w5
w6 = w6 - step * d_w6
w7 = w7 - step * d_w7
w8 = w8 - step * d_w8
return w1, w2, w3, w4, w5, w6, w7, w8

if __name__ == "__main__":
w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("=====输入值：x1, x2；真实输出值：y1, y2=====")
print(x1, x2, y1, y2)
print("=====更新前的权值=====")
print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
round(w8, 2))

for i in range(1000):
print("=====第" + str(i) + "轮=====")
out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

print("更新后的权值")
print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
round(w8, 2))


numpy版本

torch版本

#### 激活函数Sigmoid改变为Relu，观察、总结并陈述。

1、通过实验结果和损失函数图像，发现激活函数为Sigmoid函数收敛的较快，而relu函数收敛的较慢。
2、sigmoid函数反向传播时，很容易就会出现梯度消失的情况（在sigmoid接近饱和区时，变换太缓慢，导数趋于0，这种情况会造成信息丢失，从而无法完成深层网络的训练；而ReLU就不会
3、Relu会使一部分神经元的输出为0，这样就造成了网络的稀疏性(对于特征选取更好)，并且减少了参数的相互依存关系，缓解了过拟合问题的发生

#### 损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代，观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):  # 损失函数
y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
loss = torch.nn.MSELoss()  # 考虑 ： t.nn.MSELoss()
loss1 = loss(y1_pred,y1)
loss2 = loss(y2_pred,y2)
loss = loss1 + loss2
print("损失函数（MSELoss)：", loss.item())
return loss


#### 损失函数MSE改变为交叉熵，观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):  # 损失函数
y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
loss = torch.nn.CrossEntropyLoss()  # 考虑 ： t.nn.MSELoss()
loss1 = loss(y1_pred,y1)
loss2 = loss(y2_pred,y2)
loss = loss1 + loss2
print("损失函数（MSELoss)：", loss.item())
return loss


 y_pred = torch.stack([y1_pred, y2_pred], dim=1)
y = torch.stack([y1, y2], dim=1)


#### 权值w1-w8初始值换为随机数，对比“指定权值”的结果，观察、总结并陈述。

# -*- coding: utf-8 -*-
# @Time : 2022-10-01 12:11
# @Author : Mr.Liu
# @Email : 2781700291@qq.com
# @File : torch版本.py
# @ProjectName: python
# https://blog.csdn.net/qq_41033011/article/details/109325070
# torch.nn.Sigmoid(h_in)

import torch

x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值：x1, x2；真实输出值：y1, y2=====")
print(x1, x2, y1, y2)

w1, w2, w3, w4, w5, w6, w7, w8 =torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1), torch.rand(1),torch.rand(1), torch.rand(1), torch.rand(1)

def sigmoid(z):
a = 1 / (1 + torch.exp(-z))
return a

def forward_propagate(x1, x2):
in_h1 = w1 * x1 + w3 * x2
out_h1 = torch.relu(in_h1)  # out_h1 = torch.sigmoid(in_h1)
in_h2 = w2 * x1 + w4 * x2
out_h2 = torch.relu(in_h2)  # out_h2 = torch.sigmoid(in_h2)
in_o1 = w5 * out_h1 + w7 * out_h2
out_o1 = torch.relu(in_o1)  # out_o1 = torch.sigmoid(in_o1)
in_o2 = w6 * out_h1 + w8 * out_h2
out_o2 = torch.relu(in_o2)  # out_o2 = torch.sigmoid(in_o2)

print("正向计算：o1 ,o2")
print(out_o1.data, out_o2.data)

return out_o1, out_o2

def loss_fuction(x1, x2, y1, y2):  # 损失函数
y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
loss = torch.nn.CrossEntropyLoss()  # 考虑 ： t.nn.MSELoss()
y_pred = torch.stack([y1_pred, y2_pred], dim=1)
y = torch.stack([y1, y2], dim=1)
loss = loss(y_pred,y)
print("损失函数（CrossEntropyLoss)：", loss.item())
return loss

def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
# 步长
step = 2
w1.data = w1.data - step * w1.grad.data
w2.data = w2.data - step * w2.grad.data
w3.data = w3.data - step * w3.grad.data
w4.data = w4.data - step * w4.grad.data
w5.data = w5.data - step * w5.grad.data
w6.data = w6.data - step * w6.grad.data
w7.data = w7.data - step * w7.grad.data
w8.data = w8.data - step * w8.grad.data
return w1, w2, w3, w4, w5, w6, w7, w8

if __name__ == "__main__":

print("=====更新前的权值=====")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

for i in range(200):
print("=====第" + str(i) + "轮=====")
L = loss_fuction(x1, x2, y1, y2)  # 前向传播，求 Loss，构建计算图
L.backward()  # 自动求梯度，不需要人工编程实现。反向传播，求出计算图中所有梯度存入w中
w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

print("更新后的权值")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)


#### 权值w1-w8初始值换为0，观察、总结并陈述。

1 神经网络用的是梯度下降法，来进行每次更新网络的权重w，假如loss函数为： (简写的)
Loss = (y - y’)^2, 其中y = f(wx + b)

（LOSS求导）（S型函数求导）（S型函数求导）（S型函数求导）… * … (S型函数求导) * （最后函数对W求导）… 等等…

0.25
0.250.250.25*…*0.25 *其他等等吗？

【注：如若中途求导的w很大|w|>4了,则 累计多个大于1的相乘，这时候出现的是称为：梯度爆炸！！！！！！！！！！！！】

1. x>0 的时候，relu是y=x, 求导就是1，套到前面的论述的话：100个1 相乘还是为1， 大不了不变呗，但不会梯度消失
2 x<0 的时候，relu=0，常数求导为0，这个意思就是：大不了那个神经元不更新，起到网络稀疏的效果…

#### 全面总结反向传播原理和编码实现，认真写心得体会

1、不仅仅神经网络的前向传播和反向推导被我琢磨透了，而且神经的阈值电位也被我琢磨透了，哈哈哈哈。神经网络包括两个过程，其中前馈神经网络是和人的神经网络传递思想差不多，但是人的神经网络传递似乎没有反向传播这个过程。我到现在也没搜到相关的论文，好像人一出生学习的过程就是参数建立的过程。
2、下面说说反向传播原理，上面在正文已经说过一次了，这里就在说一次，反向传播就是通过误差最小化，怎么让误差最小化呢，我们可以通过求导，导数为0的时候函数取最小值，那么怎么让导数为0呢，这个时候我们就需要求导，求导等于0.就得出来参数了，咦惹，理解起来好像也不是很难，既然有了思路就需要我们进行推导了。数学公式的计算在正文中也已经进行更新了。
3、编码原理，当然使用python进行编码啦。底层使用numpy包，现成就是用torch包，torch包是一个很有名的框架，在编码的时候也遇到了很多错误，很喜欢这种遇见错误改正错误的感觉，好像闯关玩游戏一样。加强了对torch的理解。
4、在进行编码的时候，大部分时间还是浪费在了最优参数的寻找上，编码的话，根据画的流程图就好了。参数的寻找可是个大问题，比如步长、学习率、训练次数等等，沉淀一段时间一定要写一个博客，说说各个模型怎么寻找最优参数。
5、希望疫情早点过去，在宿舍憋得我都发毛了，看不见帅气的魏老师，每天各种表的统计，各种事情。都没有成段的时间进行学习，不仅仅耽误学习，耽误的更是大家的生活。

10-02 95
10-08 1245
09-17 134
10-06 86
10-09 630
09-25 335
09-25 146
03-22
06-19 913
06-15 901
06-19 441
06-19 469
06-15 706
06-19 276

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。