「竞赛调研」GeoLifeCLEF 2022 x FGVC9 - 任务及解决方案

  • 任务说明

    本次竞赛的目标是预测植物和动物物种的地理分布,比赛方提供了来自法国和美国的1.6M个地理定位的观测数据,涵盖17K个物种(其中9K个为植物物种,8K个为动物物种)。

  • 解决方案

    • rank1 - Sensio Team

      • 总体概述

        团队集成了3个模型:

      • 1. 一个双模态网络。团队使用 Nir+G+B ,在预训练的 resnet34 上,将其最后一层堆叠到一个 3 层 FCN(包含 环境向量 + 纬度 + 经度 + 国家 + 海拔平均值 + 最大-最小海拔 + "dothot" 编码(为某种 softmax-onehot 编码) )上,并将这两个骨干网络连接到最终的 17k 类层。

      • 2. 一个预训练的 mobilenetv3 100 large 模型,输入为 R+G+B+Nir,FC 网络与1.相同。团队在两个模型堆叠的最后一层之间,添加了一个额外的带有 dropout 和 ReLu的 2048 线性层。

      • 3. 一个具有 32 个估计器和 12 的深度的随机森林,输入与前面的 FC 网络相同:环境向量 + 纬度 + 经度 + 国家 + 海拔平均值 + 最大-最小海拔 + dothot 编码(softmax-onehot 编码)的土地覆盖,总共 81 个输入特征。

      • 前两个模型在 CNN 模型上具有随机垂直和水平翻转、旋转以及 5-10% 的亮度和对比度的数据增强,并将这些与平均概率合并,最终将这种平均概率的策略应用于合并 3 个模型集成。

    • 使用的方法

      • 输入聚合

        团队使用预训练模型,并随机初始化了添加到NIR通道的滤波器,将输入聚合在一起,最终形成了一个带有附加通道的补丁。然后,这个补丁可以被送入一个单独的CNN。这种方法训练了一个使用大多数可用模态的模型,将RGB补丁与NIR补丁聚合在一起,得到的模型相对简单。

      • 独立特征提取器

        团队使用基于CNN的一个特征提取器来处理RGB+NIR(Sensio Team和UdeM / Mila)或NIR+GB(Sen--sio Team)补丁,并使用基于神经网络的多层感知器(MLP)用于表格数据。这种独立特征提取器方法的优势在于,能够更有可能地从不同的模态中提取正确的相关信息。

      • 将预测结果进行平均

        团队训练单独的模型,并对它们的预测结果进行平均。这种方法的优点是简单,并且模型可以独立地进行训练,很容易实现添加或删除一个模态。

      • 聚合

        数据集的另一个主要特征是,所提供的观测数据是仅存在数据:在给定位置,我们只知道存在一种物种,而没有完整的物种清单或缺失的物种。团队通过使用一个方格网格,将观察到的物种聚合到该单元格中来解决这个问题。然后,他们以不同的方式使用这些信息:团队将落入其单元格的30个物种进行映射,并将此列表用作新标签。

    • rank2 - Matsushita-san

      • 总体概述

        解决方案基于深度卷积神经网络(CNN)处理卫星遥感。具体而言,基本模型由两个CNN特征提取器组成(标准的图像分类架构,其最终的全连接分类层被删除)。它们并行运行并处理RS图像的不同部分:第一个接收数据集的RGB部分,第二个接收高度、近红外(NIR)和NDVI(归一化植被指数:(NIR-红)/(NIR+红))的堆栈。

        这两个特征提取器并行处理它们各自分配的三通道图像,但不共享参数。它们各自输出相同大小的潜在特征向量,这些向量被串联起来,经过大量的丢弃操作(概率为0.45时效果最好),并通过单个全连接层转换为每个类别的激活。

        训练模型使用的是标准的softmax交叉熵损失函数。

      • 使用的方法

        • 模型架构

        团队最初使用了特征提取器分支的ResNet-50,取得了不错的效果,仅通过切换到Inception-v4就获得了近2%的提升。此外,他们还尝试了DenseNet-201(它的表现与ResNet-50相似)和更复杂的架构,如ConvNext和Vision Transformer(ViT B/16),但这两个模型训练时间非常长,且出现了严重的过拟合问题(训练集上的top-30准确率为35%,验证集上为5%)。

        • 预训练

        作者尝试了不同的预训练方法,表现最好的是简单地使用ImageNet预训练的权重。

        • 空间块标签交换

        空间块标签交换通过以下方式放宽严格的单一类要求:

      • 1. 创建一个空间网格,包括小正方形单元(称为“块”)

      • 2. 在训练时期中,对于每个块,将其标签随机交换为该块周围的另一个块的标签

      • 通过该方法可以在模型中引入更多的空间信息,使得模型更好地预测哪些物种可能出现在哪些区域,并且可以更好地处理缺失的数据。

        • 数据增强

        数据增强旨在增加训练数据量并帮助模型更好地泛化。团队使用了许多不同的增强方法,包括旋转、平移、缩放、镜像和颜色抖动。这些方法可以通过对训练数据进行随机变换来扩充数据集,从而提高模型的性能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值