已知参数方程 { x = x ( t ) y = y ( t ) ,求 d y d x 和 d 2 y d x 2 \text{已知参数方程}\left. \left\{ \begin{array}{l} x=x\left( t \right)\\ y=y\left( t \right)\\ \end{array} \right. \right. \text{,求}\frac{dy}{dx}\text{和}\frac{d^2y}{dx^2} 已知参数方程{x=x(t)y=y(t),求dxdy和dx2d2y
一些便于做题但不严谨的推导 \text{一些便于做题但不严谨的推导} 一些便于做题但不严谨的推导
求 d y d x \text{求}\frac{dy}{dx} 求dxdy
同除以 d t ,得到 \text{同除以}dt\text{,得到} 同除以dt,得到
d y d x = d y d t d x d t = y ′ ( t ) x ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{y^{\prime}(t)}{x^{'}(t)} dxdy=dtdxdtdy=x′(t)y′(t)
或者 \text{或者} 或者
y
(
x
)
=
y
(
t
)
,其中
x
=
x
(
t
)
y\left( x \right) =y\left( t \right) \text{,其中}x=x\left( t \right)
y(x)=y(t),其中x=x(t)
两边同时对
t
求导,得到
\text{两边同时对}t\text{求导,得到}
两边同时对t求导,得到
y ′ ( x ) ⋅ x ′ ( t ) = y ′ ( t ) y ′ ( x ) = y ′ ( t ) x ′ ( t ) \begin{gathered}y'(x)\cdot x'(t)=y'(t)\\y'(x)=\frac{y'(t)}{x'(t)}\end{gathered} y′(x)⋅x′(t)=y′(t)y′(x)=x′(t)y′(t)
求 d 2 y d x 2 \text{求}\frac{d^2y}{dx^2} 求dx2d2y
y
′
(
x
)
=
d
y
d
x
=
y
′
(
t
)
x
′
(
t
)
≐
g
(
t
)
y'(x)=\frac{dy}{dx}=\frac{y'(t)}{x'(t)}\doteq g(t)
y′(x)=dxdy=x′(t)y′(t)≐g(t)
两边同时对
t
求导,得到
\text{两边同时对}t\text{求导,得到}
两边同时对t求导,得到
y ′ ′ ( x ) x ′ ( t ) = g ′ ( t ) = y ′ ′ ( t ) x ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) [ x ′ ( t ) ] 2 y ′ ′ ( x ) = g ′ ( t ) x ′ ( t ) = y ′ ′ ( t ) x ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) [ x ′ ( t ) ] 3 \begin{gathered} y^{\prime\prime}(x)x^{\prime}(t)=g^{\prime}(t)=\frac{y^{\prime\prime}(t)x^{\prime}(t)-y^{\prime}(t)x^{\prime\prime}(t)}{\left[x^{'}(t)\right]^{2}} \\ y^{\prime\prime}\left(x\right)=\frac{g^{\prime}\left(t\right)}{x^{'}\left(t\right)}=\frac{y^{\prime\prime}\left(t\right)x^{\prime}\left(t\right)-y^{\prime}\left(t\right)x^{\prime\prime}\left(t\right)}{\left[x^{'}\left(t\right)\right]^{3}} \end{gathered} y′′(x)x′(t)=g′(t)=[x′(t)]2y′′(t)x′(t)−y′(t)x′′(t)y′′(x)=x′(t)g′(t)=[x′(t)]3y′′(t)x′(t)−y′(t)x′′(t)