参数方程的导数

博客围绕已知参数方程{x=x(t)y=y(t),介绍了求dxdy和dx2d2y的方法。通过同除以dt或两边同时对t求导等方式进行推导,给出了便于做题但不严谨的推导过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知参数方程 { x = x ( t ) y = y ( t ) ,求 d y d x 和 d 2 y d x 2 \text{已知参数方程}\left. \left\{ \begin{array}{l} x=x\left( t \right)\\ y=y\left( t \right)\\ \end{array} \right. \right. \text{,求}\frac{dy}{dx}\text{和}\frac{d^2y}{dx^2} 已知参数方程{x=x(t)y=y(t),求dxdydx2d2y

一些便于做题但不严谨的推导 \text{一些便于做题但不严谨的推导} 一些便于做题但不严谨的推导

求 d y d x \text{求}\frac{dy}{dx} dxdy

同除以 d t ,得到 \text{同除以}dt\text{,得到} 同除以dt,得到

d y d x = d y d t d x d t = y ′ ( t ) x ′ ( t ) \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{y^{\prime}(t)}{x^{'}(t)} dxdy=dtdxdtdy=x(t)y(t)

或者 \text{或者} 或者

y ( x ) = y ( t ) ,其中 x = x ( t ) y\left( x \right) =y\left( t \right) \text{,其中}x=x\left( t \right) y(x)=y(t),其中x=x(t)
两边同时对 t 求导,得到 \text{两边同时对}t\text{求导,得到} 两边同时对t求导,得到

y ′ ( x ) ⋅ x ′ ( t ) = y ′ ( t ) y ′ ( x ) = y ′ ( t ) x ′ ( t ) \begin{gathered}y'(x)\cdot x'(t)=y'(t)\\y'(x)=\frac{y'(t)}{x'(t)}\end{gathered} y(x)x(t)=y(t)y(x)=x(t)y(t)

求 d 2 y d x 2 \text{求}\frac{d^2y}{dx^2} dx2d2y

y ′ ( x ) = d y d x = y ′ ( t ) x ′ ( t ) ≐ g ( t ) y'(x)=\frac{dy}{dx}=\frac{y'(t)}{x'(t)}\doteq g(t) y(x)=dxdy=x(t)y(t)g(t)
两边同时对 t 求导,得到 \text{两边同时对}t\text{求导,得到} 两边同时对t求导,得到

y ′ ′ ( x ) x ′ ( t ) = g ′ ( t ) = y ′ ′ ( t ) x ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) [ x ′ ( t ) ] 2 y ′ ′ ( x ) = g ′ ( t ) x ′ ( t ) = y ′ ′ ( t ) x ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) [ x ′ ( t ) ] 3 \begin{gathered} y^{\prime\prime}(x)x^{\prime}(t)=g^{\prime}(t)=\frac{y^{\prime\prime}(t)x^{\prime}(t)-y^{\prime}(t)x^{\prime\prime}(t)}{\left[x^{'}(t)\right]^{2}} \\ y^{\prime\prime}\left(x\right)=\frac{g^{\prime}\left(t\right)}{x^{'}\left(t\right)}=\frac{y^{\prime\prime}\left(t\right)x^{\prime}\left(t\right)-y^{\prime}\left(t\right)x^{\prime\prime}\left(t\right)}{\left[x^{'}\left(t\right)\right]^{3}} \end{gathered} y′′(x)x(t)=g(t)=[x(t)]2y′′(t)x(t)y(t)x′′(t)y′′(x)=x(t)g(t)=[x(t)]3y′′(t)x(t)y(t)x′′(t)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值