例1
已知 { x = t e t y = 2 t + t 2 \left\{\begin{matrix}x=te^t\\y=2t+t^2\end{matrix}\right. {x=tety=2t+t2,求 d y d x \dfrac{dy}{dx} dxdy
解:
d
x
d
t
=
(
t
+
1
)
e
t
\qquad\dfrac{dx}{dt}=(t+1)e^t
dtdx=(t+1)et
d y d t = 2 + 2 t \qquad\dfrac{dy}{dt}=2+2t dtdy=2+2t
d y d x = d y d t d x d t = 2 + 2 t ( t + 1 ) e t = 2 e t \qquad\dfrac{dy}{dx}=\dfrac{\quad\frac{dy}{dt}\quad}{\frac{dx}{dt}}=\dfrac{2+2t}{(t+1)e^t}=\dfrac{2}{e^t} dxdy=dtdxdtdy=(t+1)et2+2t=et2
例2
已知 { x = 3 t 2 + 2 t e y sin t − y + 1 = 0 \left\{\begin{matrix}x=3t^2+2t\\e^y\sin t-y+1=0\end{matrix}\right. {x=3t2+2teysint−y+1=0,求 d y d x \dfrac{dy}{dx} dxdy
解:
d
x
d
t
=
6
t
+
2
\qquad\dfrac{dx}{dt}=6t+2
dtdx=6t+2
\qquad 对 e y sin t − y + 1 = 0 e^y\sin t-y+1=0 eysint−y+1=0两边同时对 t t t求导得
e y y ′ sin t + e y cos t − y ′ = 0 \qquad e^yy'\sin t+e^y\cos t-y'=0 eyy′sint+eycost−y′=0
\qquad 移项得 ( e y sin t − 1 ) y ′ = − e y cos t (e^y\sin t-1)y'=-e^y\cos t (eysint−1)y′=−eycost
d y d t = y ′ = e y cos t 1 − e y sin t \qquad \dfrac{dy}{dt}=y'=\dfrac{e^y\cos t}{1-e^y\sin t} dtdy=y′=1−eysinteycost
d y d x = d y d t d x d t = e y cos t ( 6 t + 2 ) ( 1 − e y sin t ) \qquad\dfrac{dy}{dx}=\dfrac{\quad\frac{dy}{dt}\quad}{\frac{dx}{dt}}=\dfrac{e^y\cos t}{(6t+2)(1-e^y\sin t)} dxdy=dtdxdtdy=(6t+2)(1−eysint)eycost
这题不仅考了参数方程求导,还考了隐函数求导。