问题1的解题思路围绕建立货量预测模型以预测未来1天各线路货量,并将货量拆解到10分钟颗粒度展开。首先需要对数据进行预处理,读取四个Excel文件(附件1、附件3、附件4、附件5),获取各文件中工作表名称,发现均只有工作表'Sheet1',接着查看该工作表基本信息和前几行,确定附件1中`线路编码`、`发运节点`和`在途时长`列,附件3中`线路编码`、`日期`和`包裹量`列参与分析,附件4和附件5暂不使用。然后,以`线路编码`为连接键合并附件1和附件3的数据,并按`线路编码`和`日期`排序。之后,选用LSTM模型进行预测,..........
2.2 问题2分析
首先,读取问题 1 输出的预测结果文件,包括结果表 1 和表 2 的数据,同时读取附件 1(各线路信息)和附件 5(各车队自有车数量)的数据,为后续分析做准备。由于车辆存在日固定成本和单次装载量的限制,定义好车辆的日固定成本和单次装载量参数。接着,将结果表 1 和附件 1 的数据进行合并,以便获取发运节点信息,并把时间列转换为日期时间类型。之后按线路编码和发运节点聚合数据,计算每条线路的总包裹量,再依据车辆单次装载量计算出每条线路的发运车辆数。然后,初始化结果表 3,并根据附件 5 创建自有车队车辆使用情况字典,记录各车队的自有车数量。采用贪心算法来分配车辆(各类启发式算法都可以)...............
2.3 问题3分析
问题3的解题思路是在问题2的基础上,考虑标准容器对运输需求的影响。首先,读取问题1输出的预测结果文件(结果表1和表2)、附件1(各线路信息)以及附件5(各车队自有车数量),同时定义车辆的日固定成本、不使用容器时的单次装载量和使用容器时的单次装载量。接着,把结果表1与附件1的数据合并以获取发运节点信息,将时间列转换为日期时间类型,并按线路编码和发运节点聚合计算每条线路的总包裹量。然后,初始化结果表4并创建记录各车队自有车数量的字典,在贪心算法分配车辆过程中,分别计算不使用和使用标准容器时所需的车辆数及对应的总成本,依据成本高低判断是否使用容器........
问题4的解题思路是评估问题1的货量预测结果出现偏差时,对基于问题3的调度模型优化结果的影响。具体步骤如下:首先,定义不同的偏差程度,如 -0.3、 -0.2、 -0.1、 0.1、 0.2、 0.3 等,用于模拟不同程度的货量预测偏差情况,构建一个偏差程度的列表,后续会基于这些偏差值进行分析...........
问题1:估算共享单车总量及不同停车点位在不同时间点的数量分布
首先,我们需要对附件1的数据进行汇总,以估算出校园内的共享单车总量。由于数据是按不同时间和停车点位统计的,我们可以