矢量的坐标表达式
方向余弦
cos
α
=
a
1
∣
a
∣
=
a
1
a
1
2
+
a
2
2
+
a
3
2
,
cos
β
=
a
2
∣
a
∣
=
a
2
a
1
2
+
a
2
2
+
a
3
2
,
cos
γ
=
a
3
∣
a
∣
=
a
3
a
1
2
+
a
2
2
+
a
3
2
\cos\alpha=\dfrac{a_1}{|\boldsymbol{a}|}=\dfrac{a_1}{\sqrt{a_1^2+a_2^2+a_3^2}},\cos\beta=\dfrac{a_2}{|\boldsymbol{a}|}=\dfrac{a_2}{\sqrt{a_1^2+a_2^2+a_3^2}},\cos\gamma=\dfrac{a_3}{|\boldsymbol{a}|}=\dfrac{a_3}{\sqrt{a_1^2+a_2^2+a_3^2}}
cosα=∣a∣a1=a12+a22+a32a1,cosβ=∣a∣a2=a12+a22+a32a2,cosγ=∣a∣a3=a12+a22+a32a3
⟹
cos
2
α
+
cos
2
β
+
cos
2
γ
=
1
\Longrightarrow \cos^2\alpha+\cos^2\beta+\cos^2\gamma=1
⟹cos2α+cos2β+cos2γ=1
矢量垂直
a
⊥
b
⟺
a
⋅
b
=
0
\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0
a⊥b⟺a⋅b=0
矢量平行
a
∥
b
⟺
a
×
b
=
∣
i
^
j
^
k
^
a
1
a
2
a
3
b
1
b
2
b
3
∣
=
0
\boldsymbol{a} \parallel \boldsymbol{b} \iff \boldsymbol{a} \times \boldsymbol{b}=\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\end{vmatrix}=\boldsymbol{0}
a∥b⟺a×b=∣∣∣∣∣∣i^a1b1j^a2b2k^a3b3∣∣∣∣∣∣=0
三矢量的混合积
a
⋅
(
b
×
c
)
=
b
⋅
(
c
×
a
)
=
c
⋅
(
a
×
b
)
=
∣
a
1
a
2
a
3
b
1
b
2
b
3
c
1
c
2
c
3
∣
\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot (\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b})=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}
a⋅(b×c)=b⋅(c×a)=c⋅(a×b)=∣∣∣∣∣∣a1b1c1a2b2c2a3b3c3∣∣∣∣∣∣
平行六面体体积
V
=
±
a
⋅
(
b
×
c
)
=
∣
a
⋅
(
b
×
c
)
∣
V=\pm \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})=|\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})|
V=±a⋅(b×c)=∣a⋅(b×c)∣
矢量共面
a
⋅
(
b
×
c
)
=
0
\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})=0
a⋅(b×c)=0
三矢量的二重矢积
{
a
×
(
b
×
c
)
=
(
a
⋅
c
)
b
−
(
a
⋅
b
)
c
(
a
×
b
)
×
c
=
−
c
×
(
a
×
b
)
=
(
c
⋅
a
)
b
−
(
c
⋅
b
)
a
\begin{cases}\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b})\boldsymbol{c} \\ (\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}=-\boldsymbol{c} \times (\boldsymbol{a} \times \boldsymbol{b})=(\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b}-(\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}\end{cases}
{a×(b×c)=(a⋅c)b−(a⋅b)c(a×b)×c=−c×(a×b)=(c⋅a)b−(c⋅b)a
平面与直线方程
平面的点法式方程
A
(
x
−
x
0
)
+
B
(
y
−
y
0
)
+
C
(
z
−
z
0
)
=
0
A(x-x_0)+B(y-y_0)+C(z-z_0)=0
A(x−x0)+B(y−y0)+C(z−z0)=0
设平面法向量
n
=
A
i
^
+
B
j
^
+
C
k
^
\boldsymbol{n}=A\hat{i}+B\hat{j}+C\hat{k}
n=Ai^+Bj^+Ck^ 和平面上一点
P
(
x
0
,
y
0
,
z
0
)
P(x_0,y_0,z_0)
P(x0,y0,z0),取平面上任一点
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z),有
n
⊥
P
Q
→
\boldsymbol{n} \perp \overrightarrow{PQ}
n⊥PQ 即
(
A
,
B
,
C
)
⋅
(
x
−
x
0
,
y
−
y
0
,
z
−
z
0
)
=
A
(
x
−
x
0
)
+
B
(
y
−
y
0
)
+
C
(
z
−
z
0
)
=
0
(A,B,C) \cdot (x-x_0,y-y_0,z-z_0)=A(x-x_0)+B(y-y_0)+C(z-z_0)=0
(A,B,C)⋅(x−x0,y−y0,z−z0)=A(x−x0)+B(y−y0)+C(z−z0)=0。
平面的一般式方程
A
x
+
B
y
+
C
z
+
D
=
0
Ax+By+Cz+D=0
Ax+By+Cz+D=0
平面的截距式方程
x
−
D
A
+
y
−
D
B
+
z
−
D
C
=
1
\dfrac{x}{-\dfrac{D}{A}}+\dfrac{y}{-\dfrac{D}{B}}+\dfrac{z}{-\dfrac{D}{C}}=1
−ADx+−BDy+−CDz=1
(
A
,
B
,
C
,
D
≠
0
)
(A,B,C,D \ne 0)
(A,B,C,D=0)
两平面的夹角
cos
θ
=
cos
<
n
1
,
n
2
>
=
n
1
⋅
n
2
∣
n
1
∣
∣
n
2
∣
=
A
1
A
2
+
B
1
B
2
+
C
1
C
2
A
1
2
+
B
1
2
+
C
1
2
A
2
2
+
B
2
2
+
C
2
2
\cos\theta=\cos<\boldsymbol{n_1},\boldsymbol{n_2}>=\dfrac{\boldsymbol{n_1} \cdot \boldsymbol{n_2}}{|\boldsymbol{n_1}||\boldsymbol{n_2}|}=\dfrac{A_1A_2+B_1B_2+C_1C_2}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}}
cosθ=cos<n1,n2>=∣n1∣∣n2∣n1⋅n2=A12+B12+C12A22+B22+C22A1A2+B1B2+C1C2
两平面垂直
n
1
⊥
n
2
⟺
n
1
⋅
n
2
=
A
1
A
2
+
B
1
B
2
+
C
1
C
2
=
0
\boldsymbol{n_1} \perp \boldsymbol{n_2} \iff \boldsymbol{n_1} \cdot \boldsymbol{n_2}=A_1A_2+B_1B_2+C_1C_2=0
n1⊥n2⟺n1⋅n2=A1A2+B1B2+C1C2=0
两平面平行
n
1
∥
n
2
⟺
n
1
×
n
2
=
0
⟺
A
1
A
2
=
B
1
B
2
=
C
1
C
2
\boldsymbol{n_1} \parallel \boldsymbol{n_2} \iff \boldsymbol{n_1} \times \boldsymbol{n_2}=\boldsymbol{0} \iff \dfrac{A_1}{A_2}=\dfrac{B_1}{B_2}=\dfrac{C_1}{C_2}
n1∥n2⟺n1×n2=0⟺A2A1=B2B1=C2C1
点到平面的距离
d
=
∣
A
x
0
+
B
y
0
+
C
z
0
+
D
∣
A
2
+
B
2
+
C
2
d=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}
d=A2+B2+C2∣Ax0+By0+Cz0+D∣
设平面
A
x
+
B
y
+
C
z
+
D
=
0
Ax+By+Cz+D=0
Ax+By+Cz+D=0 法向量
n
=
A
i
^
+
B
j
^
+
C
k
^
\boldsymbol{n}=A\hat{i}+B\hat{j}+C\hat{k}
n=Ai^+Bj^+Ck^,空间上有一点
P
(
x
0
,
y
0
,
z
0
)
P(x_0,y_0,z_0)
P(x0,y0,z0),取平面上任一点
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z),有
d
=
∣
P
Q
→
∣
∣
cos
<
P
Q
→
,
n
>
∣
=
∣
P
Q
→
⋅
n
0
∣
=
∣
(
x
−
x
0
,
y
−
y
0
,
z
−
z
0
)
⋅
(
A
,
B
,
C
)
∣
A
2
+
B
2
+
C
2
=
∣
A
x
0
+
B
y
0
+
C
z
0
+
D
∣
A
2
+
B
2
+
C
2
d=|\overrightarrow{PQ}||\cos<\overrightarrow{PQ},\boldsymbol{n}>|=|\overrightarrow{PQ} \cdot \boldsymbol{n}^0|=\dfrac{|(x-x_0,y-y_0,z-z_0) \cdot (A,B,C)|}{\sqrt{A^2+B^2+C^2}}=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}
d=∣PQ∣∣cos<PQ,n>∣=∣PQ⋅n0∣=A2+B2+C2∣(x−x0,y−y0,z−z0)⋅(A,B,C)∣=A2+B2+C2∣Ax0+By0+Cz0+D∣ 直线的点向式方程
x
−
x
0
l
=
y
−
y
0
m
=
z
−
z
0
n
\dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}
lx−x0=my−y0=nz−z0
过定点
P
(
x
0
,
y
0
,
z
0
)
P(x_0,y_0,z_0)
P(x0,y0,z0) 与方向矢量
v
=
l
i
^
+
m
j
^
+
n
k
^
\boldsymbol{v}=l\hat{i}+m\hat{j}+n\hat{k}
v=li^+mj^+nk^ 平行的直线,取直线上任一点
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z),有
P
Q
→
∥
v
\overrightarrow{PQ} \parallel \boldsymbol{v}
PQ∥v 即
P
Q
→
×
v
=
0
⟺
x
−
x
0
l
=
y
−
y
0
m
=
z
−
z
0
n
\overrightarrow{PQ} \times \boldsymbol{v}=0 \iff \dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}
PQ×v=0⟺lx−x0=my−y0=nz−z0 直线的参数式方程
{
x
=
x
0
+
l
t
y
=
y
0
+
m
t
z
=
z
0
+
n
t
(
t
∈
R
)
\begin{cases}x=x_0+lt \\ y=y_0+mt \\ z=z_0+nt\end{cases} \quad (t \in \mathbb{R})
⎩⎪⎨⎪⎧x=x0+lty=y0+mtz=z0+nt(t∈R)
x
−
x
0
l
=
y
−
y
0
m
=
z
−
z
0
n
=
t
⟺
{
x
=
x
0
+
l
t
y
=
y
0
+
m
t
z
=
z
0
+
n
t
\dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}=t \iff \begin{cases}x=x_0+lt \\ y=y_0+mt \\ z=z_0+nt\end{cases}
lx−x0=my−y0=nz−z0=t⟺⎩⎪⎨⎪⎧x=x0+lty=y0+mtz=z0+nt 直线的两点式方程
x
−
x
1
x
2
−
x
1
=
y
−
y
1
y
2
−
y
1
=
z
−
z
1
z
2
−
z
1
\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}
x2−x1x−x1=y2−y1y−y1=z2−z1z−z1
取直线上两点
P
(
x
1
,
y
1
,
z
1
)
P(x_1,y_1,z_1)
P(x1,y1,z1) 和
Q
(
x
2
,
y
2
,
z
2
)
Q(x_2,y_2,z_2)
Q(x2,y2,z2),则方向矢量为
P
Q
→
=
(
x
2
−
x
1
,
y
2
−
y
1
,
z
2
−
z
1
)
\overrightarrow{PQ}=(x_2-x_1,y_2-y_1,z_2-z_1)
PQ=(x2−x1,y2−y1,z2−z1),改写点向式方程得到两点式方程。
直线的一般式方程
{
A
1
x
+
B
1
y
+
C
1
z
+
D
1
=
0
A
2
x
+
B
2
y
+
C
2
z
+
D
2
=
0
\begin{cases}A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0\end{cases}
{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
取两平面法向量
n
1
=
(
A
1
,
B
1
,
C
1
)
\boldsymbol{n_1}=(A_1,B_1,C_1)
n1=(A1,B1,C1) 和
n
2
=
(
A
2
,
B
2
,
C
2
)
\boldsymbol{n_2}=(A_2,B_2,C_2)
n2=(A2,B2,C2),则直线方向矢量
v
=
n
1
×
n
2
=
∣
i
^
j
^
k
^
A
1
B
1
C
1
A
2
B
2
C
2
∣
\boldsymbol{v}=\boldsymbol{n_1} \times \boldsymbol{n_2}=\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2\end{vmatrix}
v=n1×n2=∣∣∣∣∣∣i^A1A2j^B1B2k^C1C2∣∣∣∣∣∣,再取直线上一点
P
(
x
0
,
y
0
,
z
0
)
P(x_0,y_0,z_0)
P(x0,y0,z0) 即可转化为点向式方程。
两直线的夹角
cos
θ
=
cos
<
v
1
,
v
2
>
=
v
1
⋅
v
2
∣
v
1
∣
∣
v
2
∣
=
l
1
l
2
+
m
1
m
2
+
n
1
n
2
l
1
2
+
m
1
2
+
n
1
2
l
2
2
+
m
2
2
+
n
2
2
\cos\theta=\cos<\boldsymbol{v_1},\boldsymbol{v_2}>=\dfrac{\boldsymbol{v_1} \cdot \boldsymbol{v_2}}{|\boldsymbol{v_1}||\boldsymbol{v_2}|}=\dfrac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{l_1^2+m_1^2+n_1^2}\sqrt{l_2^2+m_2^2+n_2^2}}
cosθ=cos<v1,v2>=∣v1∣∣v2∣v1⋅v2=l12+m12+n12l22+m22+n22l1l2+m1m2+n1n2
两直线垂直
v
1
⊥
v
2
⟺
v
1
⋅
v
2
=
l
1
l
2
+
m
1
m
2
+
n
1
n
2
=
0
\boldsymbol{v_1} \perp \boldsymbol{v_2} \iff \boldsymbol{v_1} \cdot \boldsymbol{v_2}=l_1l_2+m_1m_2+n_1n_2=0
v1⊥v2⟺v1⋅v2=l1l2+m1m2+n1n2=0
两直线平行
v
1
∥
v
2
⟺
v
1
×
v
2
=
0
⟺
l
1
l
2
=
m
1
m
2
=
n
1
n
2
\boldsymbol{v_1} \parallel \boldsymbol{v_2} \iff \boldsymbol{v_1} \times \boldsymbol{v_2}=\boldsymbol{0} \iff \dfrac{l_1}{l_2}=\dfrac{m_1}{m_2}=\dfrac{n_1}{n_2}
v1∥v2⟺v1×v2=0⟺l2l1=m2m1=n2n1
直线与平面的夹角
sin
θ
=
∣
cos
<
n
,
v
>
∣
=
∣
n
⋅
v
∣
∣
n
∣
∣
v
∣
=
∣
A
l
+
B
m
+
C
n
∣
A
2
+
B
2
+
C
2
l
2
+
m
2
+
n
2
\sin\theta=|\cos<\boldsymbol{n},\boldsymbol{v}>|=\dfrac{|\boldsymbol{n} \cdot \boldsymbol{v}|}{|\boldsymbol{n}||\boldsymbol{v}|}=\dfrac{|Al+Bm+Cn|}{\sqrt{A^2+B^2+C^2}\sqrt{l^2+m^2+n^2}}
sinθ=∣cos<n,v>∣=∣n∣∣v∣∣n⋅v∣=A2+B2+C2l2+m2+n2∣Al+Bm+Cn∣
点到直线的距离
h
=
∣
P
Q
→
∣
∣
sin
<
P
Q
→
,
v
>
∣
=
∣
P
Q
→
×
v
∣
∣
v
∣
h=|\overrightarrow{PQ}||\sin<\overrightarrow{PQ},\boldsymbol{v}>|=\dfrac{|\overrightarrow{PQ} \times \boldsymbol{v}|}{|\boldsymbol{v}|}
h=∣PQ∣∣sin<PQ,v>∣=∣v∣∣PQ×v∣
直线在平面上的投影方程 已知直线
L
L
L(方向矢量
v
\boldsymbol{v}
v)和平面
π
\pi
π(法向量
n
\boldsymbol{n}
n),先求过直线
L
L
L 与平面
π
\pi
π 垂直的平面
σ
\sigma
σ(法向量
n
×
v
\boldsymbol{n} \times \boldsymbol{v}
n×v,过
L
L
L 上一定点
P
P
P),投影方程即
π
\pi
π 与
σ
\sigma
σ 的平面交。
两异面直线之间的距离 过直线
L
1
L_1
L1(方向矢量
v
1
\boldsymbol{v_1}
v1)作平行于直线
L
2
L_2
L2(方向矢量
v
2
\boldsymbol{v_2}
v2)的平面
π
\pi
π(法向量
n
=
v
1
×
v
2
\boldsymbol{n}=\boldsymbol{v_1} \times \boldsymbol{v_2}
n=v1×v2),取
L
1
L_1
L1 上一点
P
P
P 和
L
2
L_2
L2 上一点
Q
Q
Q,异面直线距离为
P
Q
→
\overrightarrow{PQ}
PQ 在
n
\boldsymbol{n}
n 上的投影,即
d
=
∣
P
Q
→
⋅
n
∣
∣
n
∣
=
∣
P
Q
→
⋅
(
v
1
×
v
2
)
∣
∣
v
1
×
v
2
∣
d=\dfrac{|\overrightarrow{PQ} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|}=\dfrac{|\overrightarrow{PQ} \cdot (\boldsymbol{v_1} \times \boldsymbol{v_2})|}{|\boldsymbol{v_1} \times \boldsymbol{v_2}|}
d=∣n∣∣PQ⋅n∣=∣v1×v2∣∣PQ⋅(v1×v2)∣。
平面束方程 若直线
L
L
L 是平面
π
1
:
A
1
x
+
B
1
y
+
C
1
z
+
D
1
=
0
\pi_1:A_1x+B_1y+C_1z+D_1=0
π1:A1x+B1y+C1z+D1=0 与 平面
π
2
:
A
2
x
+
B
2
y
+
C
2
z
+
D
2
=
0
\pi_2:A_2x+B_2y+C_2z+D_2=0
π2:A2x+B2y+C2z+D2=0 的交线,则以直线
L
L
L 为轴的平面束方程为
λ
(
A
1
x
+
B
1
y
+
C
1
z
+
D
1
)
+
μ
(
A
2
x
+
B
2
y
+
C
2
z
+
D
2
)
=
0
\lambda(A_1x+B_1y+C_1z+D_1)+\mu(A_2x+B_2y+C_2z+D_2)=0
λ(A1x+B1y+C1z+D1)+μ(A2x+B2y+C2z+D2)=0。
曲面方程与空间曲线方程
柱面方程(以
O
x
y
Oxy
Oxy 平面上的曲线为准线)
F
(
x
−
a
c
z
,
y
−
b
c
z
)
=
0
F\left(x-\dfrac{a}{c}z,y-\dfrac{b}{c}z\right)=0
F(x−caz,y−cbz)=0
设
O
x
y
Oxy
Oxy 平面上的曲线
Γ
:
F
(
x
,
y
)
=
0
\Gamma:F(x,y)=0
Γ:F(x,y)=0,母线
L
L
L 的方向矢量
v
=
a
i
^
+
b
j
^
+
c
k
^
\boldsymbol{v}=a\hat{i}+b\hat{j}+c\hat{k}
v=ai^+bj^+ck^
(
c
≠
0
)
(c \ne 0)
(c=0),取柱面上任一点
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z) 作母线的平行线交准线于
P
(
x
0
,
y
0
,
0
)
P(x_0,y_0,0)
P(x0,y0,0),由
P
Q
→
∥
v
\overrightarrow{PQ} \parallel \boldsymbol{v}
PQ∥v 得
x
−
x
0
a
=
y
−
y
0
b
=
z
c
\dfrac{x-x_0}{a}=\dfrac{y-y_0}{b}=\dfrac{z}{c}
ax−x0=by−y0=cz,从而
P
(
x
−
a
c
z
,
y
−
b
c
z
,
0
)
P\left(x-\dfrac{a}{c}z,y-\dfrac{b}{c}z,0\right)
P(x−caz,y−cbz,0),代入曲线
Γ
:
F
(
x
,
y
)
=
0
\Gamma:F(x,y)=0
Γ:F(x,y)=0 即可。
锥面方程(以
z
=
h
z=h
z=h 平面上的曲线为准线、原点为顶点)
F
(
h
z
x
,
h
z
y
)
=
0
F\left(\dfrac{h}{z}x,\dfrac{h}{z}y\right)=0
F(zhx,zhy)=0
设平面
z
=
h
z=h
z=h
(
h
≠
0
)
(h \ne 0)
(h=0) 上的曲线
Γ
:
F
(
x
,
y
)
=
0
\Gamma:F(x,y)=0
Γ:F(x,y)=0,取锥面上任一点
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z) 并延长
O
Q
OQ
OQ 交准线于
P
(
x
0
,
y
0
,
h
)
P(x_0,y_0,h)
P(x0,y0,h),由
O
P
→
∥
O
Q
→
\overrightarrow{OP} \parallel \overrightarrow{OQ}
OP∥OQ 得
x
0
x
=
y
0
y
=
h
z
\dfrac{x_0}{x}=\dfrac{y_0}{y}=\dfrac{h}{z}
xx0=yy0=zh,从而
P
(
h
z
x
,
h
z
y
,
h
)
P\left(\dfrac{h}{z}x,\dfrac{h}{z}y,h\right)
P(zhx,zhy,h),代入曲线
Γ
:
F
(
x
,
y
)
=
0
\Gamma:F(x,y)=0
Γ:F(x,y)=0 即可。
旋转曲面方程(以
O
y
z
Oyz
Oyz 平面上的曲线为准线、
z
z
z 轴为旋转轴)
F
(
±
x
2
+
y
2
,
z
)
=
0
F\left(\pm\sqrt{x^2+y^2},z\right)=0
F(±x2+y2,z)=0
设
O
y
z
Oyz
Oyz 平面上的曲线
Γ
:
F
(
y
,
z
)
=
0
\Gamma:F(y,z)=0
Γ:F(y,z)=0,取准线上一点
P
(
0
,
y
0
,
z
0
)
P(0,y_0,z_0)
P(0,y0,z0) 和曲面上同高的任一点
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z),由旋转可得
P
(
0
,
±
x
2
+
y
2
,
z
)
P\left(0,\pm\sqrt{x^2+y^2},z\right)
P(0,±x2+y2,z),代入曲线
Γ
:
F
(
y
,
z
)
=
0
\Gamma:F(y,z)=0
Γ:F(y,z)=0 即可。
用两曲面交线表示的空间曲线
{
F
(
x
,
y
,
z
)
=
0
G
(
x
,
y
,
z
)
=
0
\begin{cases}F(x,y,z)=0 \\ G(x,y,z)=0\end{cases}
{F(x,y,z)=0G(x,y,z)=0
用参数方程表示的空间曲线
{
x
=
φ
(
t
)
y
=
ψ
(
t
)
z
=
ω
(
t
)
\begin{cases}x=\varphi(t) \\ y=\psi(t) \\ z=\omega(t)\end{cases}
⎩⎪⎨⎪⎧x=φ(t)y=ψ(t)z=ω(t)
空间曲线在坐标平面上的投影(以
O
x
y
Oxy
Oxy 平面为投影面)
Γ
:
{
F
1
(
x
,
y
,
z
)
=
0
F
2
(
x
,
y
,
z
)
=
0
⇒
z
=
f
(
x
,
y
)
Γ
′
:
{
F
(
x
,
y
)
=
0
z
=
0
\Gamma:\begin{cases}F_1(x,y,z)=0 \\ F_2(x,y,z)=0\end{cases} \xRightarrow{z=f(x,y)} \Gamma':\begin{cases}F(x,y)=0 \\ z=0\end{cases}
Γ:{F1(x,y,z)=0F2(x,y,z)=0z=f(x,y)Γ′:{F(x,y)=0z=0
二次曲面
曲线 | 方程 |
---|---|
椭球面 | x 2 a + y 2 b + z 2 c = 1 \dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}=1 ax2+by2+cz2=1 ( a , b , c > 0 ) (a,b,c>0) (a,b,c>0) |
椭圆抛物面 | z = x 2 a + y 2 b z=\dfrac{x^2}{a}+\dfrac{y^2}{b} z=ax2+by2 ( a , b > 0 ) (a,b>0) (a,b>0) |
二次锥面 | x 2 a + y 2 b − z 2 c = 0 \dfrac{x^2}{a}+\dfrac{y^2}{b}-\dfrac{z^2}{c}=0 ax2+by2−cz2=0 |
双曲抛物面 | z = − x 2 a + y 2 b z=-\dfrac{x^2}{a}+\dfrac{y^2}{b} z=−ax2+by2 |
单叶双曲面 | x 2 a + y 2 b − z 2 c = 1 \dfrac{x^2}{a}+\dfrac{y^2}{b}-\dfrac{z^2}{c}=1 ax2+by2−cz2=1 |
双叶双曲面 | x 2 a + y 2 b − z 2 c = − 1 \dfrac{x^2}{a}+\dfrac{y^2}{b}-\dfrac{z^2}{c}=-1 ax2+by2−cz2=−1 |