微积分复习(二)矢量代数与空间解析几何

矢量的坐标表达式

方向余弦 cos ⁡ α = a 1 ∣ a ∣ = a 1 a 1 2 + a 2 2 + a 3 2 , cos ⁡ β = a 2 ∣ a ∣ = a 2 a 1 2 + a 2 2 + a 3 2 , cos ⁡ γ = a 3 ∣ a ∣ = a 3 a 1 2 + a 2 2 + a 3 2 \cos\alpha=\dfrac{a_1}{|\boldsymbol{a}|}=\dfrac{a_1}{\sqrt{a_1^2+a_2^2+a_3^2}},\cos\beta=\dfrac{a_2}{|\boldsymbol{a}|}=\dfrac{a_2}{\sqrt{a_1^2+a_2^2+a_3^2}},\cos\gamma=\dfrac{a_3}{|\boldsymbol{a}|}=\dfrac{a_3}{\sqrt{a_1^2+a_2^2+a_3^2}} cosα=aa1=a12+a22+a32 a1,cosβ=aa2=a12+a22+a32 a2,cosγ=aa3=a12+a22+a32 a3
   ⟹ cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 \Longrightarrow \cos^2\alpha+\cos^2\beta+\cos^2\gamma=1 cos2α+cos2β+cos2γ=1
矢量垂直 a ⊥ b    ⟺    a ⋅ b = 0 \boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0 abab=0
矢量平行 a ∥ b    ⟺    a × b = ∣ i ^ j ^ k ^ a 1 a 2 a 3 b 1 b 2 b 3 ∣ = 0 \boldsymbol{a} \parallel \boldsymbol{b} \iff \boldsymbol{a} \times \boldsymbol{b}=\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\end{vmatrix}=\boldsymbol{0} aba×b=i^a1b1j^a2b2k^a3b3=0
三矢量的混合积 a ⋅ ( b × c ) = b ⋅ ( c × a ) = c ⋅ ( a × b ) = ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot (\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b})=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix} a(b×c)=b(c×a)=c(a×b)=a1b1c1a2b2c2a3b3c3
平行六面体体积 V = ± a ⋅ ( b × c ) = ∣ a ⋅ ( b × c ) ∣ V=\pm \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})=|\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})| V=±a(b×c)=a(b×c)
矢量共面 a ⋅ ( b × c ) = 0 \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})=0 a(b×c)=0
三矢量的二重矢积 { a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c ( a × b ) × c = − c × ( a × b ) = ( c ⋅ a ) b − ( c ⋅ b ) a \begin{cases}\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b})\boldsymbol{c} \\ (\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}=-\boldsymbol{c} \times (\boldsymbol{a} \times \boldsymbol{b})=(\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b}-(\boldsymbol{c} \cdot \boldsymbol{b})\boldsymbol{a}\end{cases} {a×(b×c)=(ac)b(ab)c(a×b)×c=c×(a×b)=(ca)b(cb)a

平面与直线方程

平面的点法式方程 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
 设平面法向量 n = A i ^ + B j ^ + C k ^ \boldsymbol{n}=A\hat{i}+B\hat{j}+C\hat{k} n=Ai^+Bj^+Ck^ 和平面上一点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0),取平面上任一点 Q ( x , y , z ) Q(x,y,z) Q(x,y,z),有 n ⊥ P Q → \boldsymbol{n} \perp \overrightarrow{PQ} nPQ ( A , B , C ) ⋅ ( x − x 0 , y − y 0 , z − z 0 ) = A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 (A,B,C) \cdot (x-x_0,y-y_0,z-z_0)=A(x-x_0)+B(y-y_0)+C(z-z_0)=0 (A,B,C)(xx0,yy0,zz0)=A(xx0)+B(yy0)+C(zz0)=0
平面的一般式方程 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
平面的截距式方程 x − D A + y − D B + z − D C = 1 \dfrac{x}{-\dfrac{D}{A}}+\dfrac{y}{-\dfrac{D}{B}}+\dfrac{z}{-\dfrac{D}{C}}=1 ADx+BDy+CDz=1 ( A , B , C , D ≠ 0 ) (A,B,C,D \ne 0) (A,B,C,D=0)
两平面的夹角 cos ⁡ θ = cos ⁡ < n 1 , n 2 > = n 1 ⋅ n 2 ∣ n 1 ∣ ∣ n 2 ∣ = A 1 A 2 + B 1 B 2 + C 1 C 2 A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos\theta=\cos<\boldsymbol{n_1},\boldsymbol{n_2}>=\dfrac{\boldsymbol{n_1} \cdot \boldsymbol{n_2}}{|\boldsymbol{n_1}||\boldsymbol{n_2}|}=\dfrac{A_1A_2+B_1B_2+C_1C_2}{\sqrt{A_1^2+B_1^2+C_1^2}\sqrt{A_2^2+B_2^2+C_2^2}} cosθ=cos<n1,n2>=n1n2n1n2=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2
两平面垂直 n 1 ⊥ n 2    ⟺    n 1 ⋅ n 2 = A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \boldsymbol{n_1} \perp \boldsymbol{n_2} \iff \boldsymbol{n_1} \cdot \boldsymbol{n_2}=A_1A_2+B_1B_2+C_1C_2=0 n1n2n1n2=A1A2+B1B2+C1C2=0
两平面平行 n 1 ∥ n 2    ⟺    n 1 × n 2 = 0    ⟺    A 1 A 2 = B 1 B 2 = C 1 C 2 \boldsymbol{n_1} \parallel \boldsymbol{n_2} \iff \boldsymbol{n_1} \times \boldsymbol{n_2}=\boldsymbol{0} \iff \dfrac{A_1}{A_2}=\dfrac{B_1}{B_2}=\dfrac{C_1}{C_2} n1n2n1×n2=0A2A1=B2B1=C2C1
点到平面的距离 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D
 设平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 法向量 n = A i ^ + B j ^ + C k ^ \boldsymbol{n}=A\hat{i}+B\hat{j}+C\hat{k} n=Ai^+Bj^+Ck^,空间上有一点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0),取平面上任一点 Q ( x , y , z ) Q(x,y,z) Q(x,y,z),有 d = ∣ P Q → ∣ ∣ cos ⁡ < P Q → , n > ∣ = ∣ P Q → ⋅ n 0 ∣ = ∣ ( x − x 0 , y − y 0 , z − z 0 ) ⋅ ( A , B , C ) ∣ A 2 + B 2 + C 2 = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=|\overrightarrow{PQ}||\cos<\overrightarrow{PQ},\boldsymbol{n}>|=|\overrightarrow{PQ} \cdot \boldsymbol{n}^0|=\dfrac{|(x-x_0,y-y_0,z-z_0) \cdot (A,B,C)|}{\sqrt{A^2+B^2+C^2}}=\dfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=PQ cos<PQ ,n>=PQ n0=A2+B2+C2 (xx0,yy0,zz0)(A,B,C)=A2+B2+C2 Ax0+By0+Cz0+D直线的点向式方程 x − x 0 l = y − y 0 m = z − z 0 n \dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n} lxx0=myy0=nzz0
 过定点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0) 与方向矢量 v = l i ^ + m j ^ + n k ^ \boldsymbol{v}=l\hat{i}+m\hat{j}+n\hat{k} v=li^+mj^+nk^ 平行的直线,取直线上任一点 Q ( x , y , z ) Q(x,y,z) Q(x,y,z),有 P Q → ∥ v \overrightarrow{PQ} \parallel \boldsymbol{v} PQ v P Q → × v = 0    ⟺    x − x 0 l = y − y 0 m = z − z 0 n \overrightarrow{PQ} \times \boldsymbol{v}=0 \iff \dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n} PQ ×v=0lxx0=myy0=nzz0直线的参数式方程 { x = x 0 + l t y = y 0 + m t z = z 0 + n t ( t ∈ R ) \begin{cases}x=x_0+lt \\ y=y_0+mt \\ z=z_0+nt\end{cases} \quad (t \in \mathbb{R}) x=x0+lty=y0+mtz=z0+nt(tR) x − x 0 l = y − y 0 m = z − z 0 n = t    ⟺    { x = x 0 + l t y = y 0 + m t z = z 0 + n t \dfrac{x-x_0}{l}=\dfrac{y-y_0}{m}=\dfrac{z-z_0}{n}=t \iff \begin{cases}x=x_0+lt \\ y=y_0+mt \\ z=z_0+nt\end{cases} lxx0=myy0=nzz0=tx=x0+lty=y0+mtz=z0+nt直线的两点式方程 x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 \dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1} x2x1xx1=y2y1yy1=z2z1zz1
 取直线上两点 P ( x 1 , y 1 , z 1 ) P(x_1,y_1,z_1) P(x1,y1,z1) Q ( x 2 , y 2 , z 2 ) Q(x_2,y_2,z_2) Q(x2,y2,z2),则方向矢量为 P Q → = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) \overrightarrow{PQ}=(x_2-x_1,y_2-y_1,z_2-z_1) PQ =(x2x1,y2y1,z2z1),改写点向式方程得到两点式方程。
直线的一般式方程 { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases}A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0\end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
 取两平面法向量 n 1 = ( A 1 , B 1 , C 1 ) \boldsymbol{n_1}=(A_1,B_1,C_1) n1=(A1,B1,C1) n 2 = ( A 2 , B 2 , C 2 ) \boldsymbol{n_2}=(A_2,B_2,C_2) n2=(A2,B2,C2),则直线方向矢量 v = n 1 × n 2 = ∣ i ^ j ^ k ^ A 1 B 1 C 1 A 2 B 2 C 2 ∣ \boldsymbol{v}=\boldsymbol{n_1} \times \boldsymbol{n_2}=\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2\end{vmatrix} v=n1×n2=i^A1A2j^B1B2k^C1C2,再取直线上一点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0) 即可转化为点向式方程。
两直线的夹角 cos ⁡ θ = cos ⁡ < v 1 , v 2 > = v 1 ⋅ v 2 ∣ v 1 ∣ ∣ v 2 ∣ = l 1 l 2 + m 1 m 2 + n 1 n 2 l 1 2 + m 1 2 + n 1 2 l 2 2 + m 2 2 + n 2 2 \cos\theta=\cos<\boldsymbol{v_1},\boldsymbol{v_2}>=\dfrac{\boldsymbol{v_1} \cdot \boldsymbol{v_2}}{|\boldsymbol{v_1}||\boldsymbol{v_2}|}=\dfrac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{l_1^2+m_1^2+n_1^2}\sqrt{l_2^2+m_2^2+n_2^2}} cosθ=cos<v1,v2>=v1v2v1v2=l12+m12+n12 l22+m22+n22 l1l2+m1m2+n1n2
两直线垂直 v 1 ⊥ v 2    ⟺    v 1 ⋅ v 2 = l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 \boldsymbol{v_1} \perp \boldsymbol{v_2} \iff \boldsymbol{v_1} \cdot \boldsymbol{v_2}=l_1l_2+m_1m_2+n_1n_2=0 v1v2v1v2=l1l2+m1m2+n1n2=0
两直线平行 v 1 ∥ v 2    ⟺    v 1 × v 2 = 0    ⟺    l 1 l 2 = m 1 m 2 = n 1 n 2 \boldsymbol{v_1} \parallel \boldsymbol{v_2} \iff \boldsymbol{v_1} \times \boldsymbol{v_2}=\boldsymbol{0} \iff \dfrac{l_1}{l_2}=\dfrac{m_1}{m_2}=\dfrac{n_1}{n_2} v1v2v1×v2=0l2l1=m2m1=n2n1
直线与平面的夹角 sin ⁡ θ = ∣ cos ⁡ < n , v > ∣ = ∣ n ⋅ v ∣ ∣ n ∣ ∣ v ∣ = ∣ A l + B m + C n ∣ A 2 + B 2 + C 2 l 2 + m 2 + n 2 \sin\theta=|\cos<\boldsymbol{n},\boldsymbol{v}>|=\dfrac{|\boldsymbol{n} \cdot \boldsymbol{v}|}{|\boldsymbol{n}||\boldsymbol{v}|}=\dfrac{|Al+Bm+Cn|}{\sqrt{A^2+B^2+C^2}\sqrt{l^2+m^2+n^2}} sinθ=cos<n,v>=nvnv=A2+B2+C2 l2+m2+n2 Al+Bm+Cn
点到直线的距离 h = ∣ P Q → ∣ ∣ sin ⁡ < P Q → , v > ∣ = ∣ P Q → × v ∣ ∣ v ∣ h=|\overrightarrow{PQ}||\sin<\overrightarrow{PQ},\boldsymbol{v}>|=\dfrac{|\overrightarrow{PQ} \times \boldsymbol{v}|}{|\boldsymbol{v}|} h=PQ sin<PQ ,v>=vPQ ×v
直线在平面上的投影方程 已知直线 L L L(方向矢量 v \boldsymbol{v} v)和平面 π \pi π(法向量 n \boldsymbol{n} n),先求过直线 L L L 与平面 π \pi π 垂直的平面 σ \sigma σ(法向量 n × v \boldsymbol{n} \times \boldsymbol{v} n×v,过 L L L 上一定点 P P P),投影方程即 π \pi π σ \sigma σ 的平面交。
两异面直线之间的距离 过直线 L 1 L_1 L1(方向矢量 v 1 \boldsymbol{v_1} v1)作平行于直线 L 2 L_2 L2(方向矢量 v 2 \boldsymbol{v_2} v2)的平面 π \pi π(法向量 n = v 1 × v 2 \boldsymbol{n}=\boldsymbol{v_1} \times \boldsymbol{v_2} n=v1×v2),取 L 1 L_1 L1 上一点 P P P L 2 L_2 L2 上一点 Q Q Q,异面直线距离为 P Q → \overrightarrow{PQ} PQ n \boldsymbol{n} n 上的投影,即 d = ∣ P Q → ⋅ n ∣ ∣ n ∣ = ∣ P Q → ⋅ ( v 1 × v 2 ) ∣ ∣ v 1 × v 2 ∣ d=\dfrac{|\overrightarrow{PQ} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|}=\dfrac{|\overrightarrow{PQ} \cdot (\boldsymbol{v_1} \times \boldsymbol{v_2})|}{|\boldsymbol{v_1} \times \boldsymbol{v_2}|} d=nPQ n=v1×v2PQ (v1×v2)
平面束方程 若直线 L L L 是平面 π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 \pi_1:A_1x+B_1y+C_1z+D_1=0 π1:A1x+B1y+C1z+D1=0 与 平面 π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 \pi_2:A_2x+B_2y+C_2z+D_2=0 π2:A2x+B2y+C2z+D2=0 的交线,则以直线 L L L 为轴的平面束方程为 λ ( A 1 x + B 1 y + C 1 z + D 1 ) + μ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 \lambda(A_1x+B_1y+C_1z+D_1)+\mu(A_2x+B_2y+C_2z+D_2)=0 λ(A1x+B1y+C1z+D1)+μ(A2x+B2y+C2z+D2)=0

曲面方程与空间曲线方程

柱面方程(以 O x y Oxy Oxy 平面上的曲线为准线) F ( x − a c z , y − b c z ) = 0 F\left(x-\dfrac{a}{c}z,y-\dfrac{b}{c}z\right)=0 F(xcaz,ycbz)=0
 设 O x y Oxy Oxy 平面上的曲线 Γ : F ( x , y ) = 0 \Gamma:F(x,y)=0 Γ:F(x,y)=0,母线 L L L 的方向矢量 v = a i ^ + b j ^ + c k ^ \boldsymbol{v}=a\hat{i}+b\hat{j}+c\hat{k} v=ai^+bj^+ck^ ( c ≠ 0 ) (c \ne 0) (c=0),取柱面上任一点 Q ( x , y , z ) Q(x,y,z) Q(x,y,z) 作母线的平行线交准线于 P ( x 0 , y 0 , 0 ) P(x_0,y_0,0) P(x0,y0,0),由 P Q → ∥ v \overrightarrow{PQ} \parallel \boldsymbol{v} PQ v x − x 0 a = y − y 0 b = z c \dfrac{x-x_0}{a}=\dfrac{y-y_0}{b}=\dfrac{z}{c} axx0=byy0=cz,从而 P ( x − a c z , y − b c z , 0 ) P\left(x-\dfrac{a}{c}z,y-\dfrac{b}{c}z,0\right) P(xcaz,ycbz,0),代入曲线 Γ : F ( x , y ) = 0 \Gamma:F(x,y)=0 Γ:F(x,y)=0 即可。
锥面方程(以 z = h z=h z=h 平面上的曲线为准线、原点为顶点) F ( h z x , h z y ) = 0 F\left(\dfrac{h}{z}x,\dfrac{h}{z}y\right)=0 F(zhx,zhy)=0
 设平面 z = h z=h z=h ( h ≠ 0 ) (h \ne 0) (h=0) 上的曲线 Γ : F ( x , y ) = 0 \Gamma:F(x,y)=0 Γ:F(x,y)=0,取锥面上任一点 Q ( x , y , z ) Q(x,y,z) Q(x,y,z) 并延长 O Q OQ OQ 交准线于 P ( x 0 , y 0 , h ) P(x_0,y_0,h) P(x0,y0,h),由 O P → ∥ O Q → \overrightarrow{OP} \parallel \overrightarrow{OQ} OP OQ x 0 x = y 0 y = h z \dfrac{x_0}{x}=\dfrac{y_0}{y}=\dfrac{h}{z} xx0=yy0=zh,从而 P ( h z x , h z y , h ) P\left(\dfrac{h}{z}x,\dfrac{h}{z}y,h\right) P(zhx,zhy,h),代入曲线 Γ : F ( x , y ) = 0 \Gamma:F(x,y)=0 Γ:F(x,y)=0 即可。
旋转曲面方程(以 O y z Oyz Oyz 平面上的曲线为准线、 z z z 轴为旋转轴) F ( ± x 2 + y 2 , z ) = 0 F\left(\pm\sqrt{x^2+y^2},z\right)=0 F(±x2+y2 ,z)=0
 设 O y z Oyz Oyz 平面上的曲线 Γ : F ( y , z ) = 0 \Gamma:F(y,z)=0 Γ:F(y,z)=0,取准线上一点 P ( 0 , y 0 , z 0 ) P(0,y_0,z_0) P(0,y0,z0) 和曲面上同高的任一点 Q ( x , y , z ) Q(x,y,z) Q(x,y,z),由旋转可得 P ( 0 , ± x 2 + y 2 , z ) P\left(0,\pm\sqrt{x^2+y^2},z\right) P(0,±x2+y2 ,z),代入曲线 Γ : F ( y , z ) = 0 \Gamma:F(y,z)=0 Γ:F(y,z)=0 即可。
用两曲面交线表示的空间曲线 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z)=0 \\ G(x,y,z)=0\end{cases} {F(x,y,z)=0G(x,y,z)=0
用参数方程表示的空间曲线 { x = φ ( t ) y = ψ ( t ) z = ω ( t ) \begin{cases}x=\varphi(t) \\ y=\psi(t) \\ z=\omega(t)\end{cases} x=φ(t)y=ψ(t)z=ω(t)
空间曲线在坐标平面上的投影(以 O x y Oxy Oxy 平面为投影面) Γ : { F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 ⇒ z = f ( x , y ) Γ ′ : { F ( x , y ) = 0 z = 0 \Gamma:\begin{cases}F_1(x,y,z)=0 \\ F_2(x,y,z)=0\end{cases} \xRightarrow{z=f(x,y)} \Gamma':\begin{cases}F(x,y)=0 \\ z=0\end{cases} Γ:{F1(x,y,z)=0F2(x,y,z)=0z=f(x,y) Γ:{F(x,y)=0z=0

二次曲面

曲线方程
椭球面 x 2 a + y 2 b + z 2 c = 1 \dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}=1 ax2+by2+cz2=1 ( a , b , c > 0 ) (a,b,c>0) (a,b,c>0)
椭圆抛物面 z = x 2 a + y 2 b z=\dfrac{x^2}{a}+\dfrac{y^2}{b} z=ax2+by2 ( a , b > 0 ) (a,b>0) (a,b>0)
二次锥面 x 2 a + y 2 b − z 2 c = 0 \dfrac{x^2}{a}+\dfrac{y^2}{b}-\dfrac{z^2}{c}=0 ax2+by2cz2=0
双曲抛物面 z = − x 2 a + y 2 b z=-\dfrac{x^2}{a}+\dfrac{y^2}{b} z=ax2+by2
单叶双曲面 x 2 a + y 2 b − z 2 c = 1 \dfrac{x^2}{a}+\dfrac{y^2}{b}-\dfrac{z^2}{c}=1 ax2+by2cz2=1
双叶双曲面 x 2 a + y 2 b − z 2 c = − 1 \dfrac{x^2}{a}+\dfrac{y^2}{b}-\dfrac{z^2}{c}=-1 ax2+by2cz2=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值