论文阅读之LORA: LOW-RANK ADAPTATION OF LARGE LAN- GUAGE MODELS(2021)

本文介绍了一种名为LoRA的低秩适应方法,通过在Transformer模型中引入可训练的低秩矩阵,减少预训练语言模型的下游任务参数,保持或提高性能,同时降低内存需求和推理延迟。实验显示LoRA在多种NLP任务上表现出色,且与现有技术兼容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址

LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

主要内容

这篇文章的主要内容是介绍了一种名为LoRA(Low-Rank Adaptation)的技术,这是一种针对大型语言模型进行低秩适应的方法。LoRA的核心思想是在预训练模型的基础上,通过注入可训练的低秩分解矩阵到Transformer架构的每一层,而不是对所有模型参数进行微调(fine-tuning),从而大幅减少下游任务的可训练参数数量。这种方法在保持预训练权重不变的情况下,通过优化低秩矩阵来间接训练密集层的权重更新。

文章通过实验表明,LoRA在多个NLP任务上的表现与完全微调相当,甚至在某些情况下更优。LoRA的主要优势包括:

显著减少了可训练参数的数量,例如,与GPT-3 175B微调相比,LoRA可以将可训练参数减少10,000倍。
降低了GPU内存需求,提高了训练效率。
由于LoRA的简单线性设计,可以在部署时将训练矩阵与冻结权重合并,从而不会引入额外的推理延迟。
LoRA与许多现有方法正交,可以与它们结合使用,例如前缀微调(prefix-tuning)。
此外,文章还提供了对LoRA的实证研究,探讨了在语言模型适应中秩不足性的作用,并解释了LoRA的有效性。作者还发布了一个包,方便将LoRA与PyTorch模型集成,并提供了RoBERTa、DeBERTa和GPT-2的实现和模型检查点。

主要贡献

文章的主要贡献可以总结为以下几点:

1.LoRA方法的提出:文章提出了一种新的低秩适应(Low-Rank Adaptation, LoRA)方法,用于在不重新训练所有参数的情况下,对大型预训练语言模型进行有效适应。这种方法通过在Transformer架构的每一层注入可训练的低秩矩阵来实现,从而大幅减少了下游任务的可训练参数数量。

2.显著降低参数数量和内存需求:LoRA能够将可训练参数的数量减少10,000倍,同时将GPU内存需求降低3倍,这使得在资源受限的环境中部署和使用大型模型变得更加可行。

3.保持或提升模型性能:尽管LoRA减少了可训练参数的数量,但它在多个NLP任务上的性能与完全微调相当或更好,这表明LoRA是一种高效的模型适应方法。

4.无额外推理延迟:LoRA的设计允许在部署时将训练矩阵与冻结权重合并,这意味着在推理时不会引入额外的计算延迟,这与完全微调的模型相比是一个显著优势。

5.与现有技术的兼容性:LoRA可以与许多现有的模型适应技术结合使用,如前缀微调(prefix-tuning),这增加了LoRA的灵活性和实用性。

6.实证研究:文章提供了对LoRA方法的实证研究,探讨了在语言模型适应中秩不足性的作用,并解释了LoRA的有效性。

7.资源和工具的发布:作者发布了一个包,方便将LoRA与PyTorch模型集成,并提供了RoBERTa、DeBERTa和GPT-2的实现和模型检查点,这为研究社区提供了宝贵的资源。

总的来说,文章的主要贡献在于提出了一种新的、高效的大型语言模型适应方法,这种方法在减少资源消耗的同时,保持了模型的性能,并且易于与现有技术结合使用。

模型图

在这里插入图片描述
言简意赅
左边预训练模型权重不动
只训练右边的A和B

技术细节

假设预训练模型要进行常规全参数微调
在这里插入图片描述
其中Φ表示模型的参数,x表示输入,y表示输出
在这里插入图片描述
表示进行微调任务的数据集
此时我们需要调整的参数就是全参数:
在这里插入图片描述
如果是175B的模型,微调一个下游任务的模型,每次都要调整这么多参数,工作量巨大。

但是使用LoRA技术的话
在这里插入图片描述
预训练模型的参数都冻结,不调整
只是额外加一组小小的参数
也能做到和下游任务适配
在这里插入图片描述
而此时需要调整的参数远远小于预训练模型的参数
在这里插入图片描述
也就是说此时需要调整的参数很小。

文章主要聚焦于将LoRA在transformer注意力机制上进行使用,因为这也是transformer的精髓
在这里插入图片描述

在这里插入图片描述
分别用于表示四个线性层的参数。
在这里插入图片描述
用于表示预训练模型的参数
在这里插入图片描述
是自适应过程中的累积梯度更新
r就是低秩矩阵的秩

例如我们在
W上加个LoRA
在这里插入图片描述
假设W0为512*512
就单单只看这部分的话
全参数微调需要调整512*512 = 262144个参数
使用LoRA后,这262144个参数就冻结了
此时增加两个低秩矩阵 例如512*2和2*512
那么此时需要调整的参数大小就为512*2+2*512 = 2048个参数
2048 / 262144 = 0.0078125
此时要训练的参数就减少了许多

而且,当我们面对不同的下游任务时,因为原本的预训练模型是冻结的,所以预训练模型用一个就行,只需要保存的参数就是加入的低秩矩阵,这样的话,也能节省大量的存储空间。

可以看个伪代码:

class LowRankMatrix(nn.Module):
    def __init__(self, weight_matrix, rank, alpha=1.0):
        super(LowRankMatrix, self).__init__()
        self.weight_matrix = weight_matrix
        self.rank = rank
        self.alpha = alpha / rank  # 将缩放因子与秩相关联
        # 初始化低秩矩阵A和B
        self.A = nn.Parameter(torch.randn(weight_matrix.size(0), rank), requires_grad=True)
        self.B = nn.Parameter(torch.randn(rank, weight_matrix.size(1)), requires_grad=True)

    def forward(self, x):
        # 计算低秩矩阵的乘积并添加到原始权重上
        # 应用缩放因子
        updated_weight = self.weight_matrix + self.alpha * torch.mm(self.B.t(), self.A)
        return updated_weight

α和r用于缩放矩阵,帮助更好的训练

A矩阵使用随机高斯初始化
B矩阵初始化为0

实验结果

在这里插入图片描述
LoRA相较于Adapter不会显著增加推理的时间。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
LoRA效果好
在这里插入图片描述
LoRA一起用到Wq和Wv效果比较好

在这里插入图片描述
低秩已足够

<think>嗯,用户问的是在银行系统已经接入了DeepSeek模型的情况下,如何进一步用RAG和LoRA技术优化模型性能,并且要求接入部分的代码用Java写。首先,我需要确认自己对这两个技术的理解是否正确,然后再考虑如何在Java中实现。 首先,RAG是检索增强生成,结合了检索外部知识库和生成模型的能力。在银行场景中,可能需要实时查询金融产品信息、政策法规或者用户历史数据。所以,用户可能需要一个高效的检索系统,比如使用Elasticsearch或者向量数据库,然后结合生成模型来生成更准确的回答。 然后是LoRA,这是一种微调大模型的方法,通过低秩矩阵适应,可以在不改变原模型参数的情况下,用较小的参数量来调整模型行为。对于银行来说,可能需要在特定任务上微调模型,比如客服对话、风险评估等,同时保持模型原有的通用能力。 接下来,用户需要的是Java代码示例。不过,这里可能存在一些挑战,因为通常像LoRA这样的微调操作可能在Python中更常见,使用诸如Hugging Face的Transformers库。而Java在深度学习框架方面可能不如Python丰富,但仍有Deep Learning4J这样的库。不过,用户可能已经接入了DeepSeek模型,可能通过API或者某种服务的方式调用,所以实际代码可能需要结合REST API调用或者现有的Java库。 首先,关于RAG部分。在Java中,可能需要连接到一个检索系统,比如Elasticsearch,执行查询,获取相关文档,然后将这些文档作为上下文输入到DeepSeek模型中。这里需要处理检索、上下文拼接等步骤。代码示例可能包括使用Elasticsearch的Java客户端进行查询,然后构造包含上下文的请求体,发送到DeepSeek的API。 然后是LoRA部分。LoRA的实现通常涉及在模型训练时添加适配器层。如果在Java中进行微调,可能需要使用支持LoRA的库,但常见的实现可能更多在Python中。不过,用户可能已经有一个微调后的模型,通过API调用,所以在Java中可能只需要在调用模型时指定使用的LoRA适配器(比如传递一个适配器ID或名称参数)。或者,如果需要在客户端进行实时适配,这可能比较复杂,可能需要加载模型参数,这在Java中可能不太方便。所以可能的代码示例是调用已经部署好的带有LoRA适配器的模型服务,传递适配器参数。 不过,用户可能希望的是在现有系统中集成这两个技术,因此可能需要考虑如何在现有架构中添加检索步骤,以及如何调用带有LoRA适配器的模型。假设DeepSeek的API已经支持LoRA适配器,那么Java代码中可能需要添加相应的参数。 现在需要组织这些思路,给出结构化的回答,包括技术简介、优化场景、代码示例以及注意事项。需要注意代码示例可能需要简化,比如使用伪代码或假设的API调用方式,因为实际实现可能依赖具体的库或服务接口。 另外,用户可能是在银行的技术部门工作,需要确保代码的安全性和高效性,所以可能需要提到相关的最佳实践,比如缓存检索结果、微调时的数据隐私保护等。同时,可能要考虑性能问题,比如检索系统的响应时间,模型调用的延迟等。 总结一下,回答的结构应该是: 1. RAG和LoRA的简介及其在银行系统中的优化场景。 2. RAG的Java代码示例,包括检索部分和模型调用。 3. LoRA的Java代码示例,可能涉及调用带有适配器参数的模型API。 4. 注意事项,包括性能、安全、数据隐私等。 5. 结语,总结好处。 在编写代码示例时,可能需要假设使用某些库或框架,比如Elasticsearch的Java客户端,以及HTTP客户端发送请求到模型API。同时,需要确保代码示例简洁,符合Java的语法规范,并且适当添加注释。 最后,需要验证这些思路是否正确,是否有遗漏的关键点,比如RAG中上下文如何拼接,是否截断,如何处理检索失败的情况,或者LoRA适配器的具体调用方式等。可能需要进一步明确用户的具体需求,但根据问题描述,用户可能希望一个高层次的示例,所以保持代码示例的简洁和示范性是关键。</think>在银行系统中结合RAG与LoRA技术可显著提升AI模型的精准度和专业性。以下为技术简介及Java接入示例: --- ### **一、技术价值与场景** 1. **RAG(检索增强生成)** - **作用**:实时检索知识库补充上下文(如产品条款/风控规则) - **银行场景**:客户咨询应答、合规审查、风险预警 2. **LoRA(低秩适配微调)** - **作用**:低成本微调模型适配专业任务(参数更新量<1%) - **银行场景**:信贷报告生成、交易数据分析、个性化推荐 --- ### **二、Java代码实现示例** #### **1. RAG模块实现** ```java // 伪代码需替换实际SDK调用 public class RagService { // 检索知识库(示例:Elasticsearch) public List<Document> retrieveRelevantDocs(String query) { RestClient client = RestClient.builder( new HttpHost("es-host", 9200, "http")).build(); Request request = new Request("GET", "/knowledge_base/_search"); request.setJsonEntity("{ \"query\": { \"match\": { \"content\": \"" + query + "\" } } }"); Response response = client.performRequest(request); return parseDocuments(response.getEntity().getContent()); } // 拼接上下文调用DeepSeek public String generateWithRAG(String userQuery) { List<Document> docs = retrieveRelevantDocs(userQuery); String context = docs.stream().map(Document::getText).collect(Collectors.joining("\n")); String prompt = "基于以下信息回答问题:\n" + context + "\n\n问题:" + userQuery; return DeepSeekClient.generate(prompt); // 假设已有模型调用封装 } } ``` #### **2. LoRA适配调用** ```java // 假设模型服务支持LoRA适配器切换 public class LoraAdapterService { public String generateWithLora(String input, String adapterId) { JsonObject requestBody = new JsonObject(); requestBody.addProperty("input", input); requestBody.addProperty("adapter_id", adapterId); // 指定业务适配器(如loan_risk_v1) HttpResponse response = Unirest.post("https://api.deepseek.com/v1/generate")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Icy Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值