【CVPR2023】多视图对抗判别器 MAD :挖掘未知领域目标检测中的非因果因素

本文提出Multi-view Adversarial Discriminator (MAD)方法,针对域漂移问题,通过多视图鉴别特征,去除非因果因素,提高目标检测在未知领域的泛化性能。MAD包括Spurious Correlation Generator (SCG)和Multi-View Domain Classifiers (MVDC),SCG增加源域多样性,MVDC通过多视图学习领域不变的因果特征。实验表明,MAD在多个数据集上优于现有方法。
摘要由CSDN通过智能技术生成

论文题目:Multi-view Adversarial Discriminator: Mine the Non-causal Factors for Object Detection in Unseen Domains

c9955aa1bd41dc38f8a10f657899afd0.png

代码:https://github.com/K2OKOH/MAD

2e3b6cb5c4fd6deeb3de7862f25e2f90.png

导读

这篇论文探讨了一个具有挑战性的问题,即如何在实际应用中将目标检测模型适应到未知的目标领域。在传统的目标检测方法中,通常基于独立同分布(i.i.d.)的假设,即训练和测试数据集具有相同的分布。然而,在现实世界中,这一假设很难成立,因为目标领域的分布通常与源领域不同,这被称为域漂移,而目标检测模型在面对域漂移问题时性能急剧下降。

为了解决这个问题,本文提出了一种全新的方法,称为Multi-view Adversarial Discriminator(MAD),旨在从多个视图中鉴别特征,以去除非因果因素并净化共同特征。为了增加源领域的多样性,作者还引入了一个Spurious Correlation Generator(SCG)。通过将MAD与SCG结合,研究人员构建了一个能够有效处理域漂移问题的新型域泛化模型。

本文贡献

  • 非因果因素的识别和去除:MAD方法通过多个视角观察源域特征,并将这些特征映射到不同的潜在特征空间(视角),以识别和去除在不同视角中非显著的非因果因素。这有助于提取更纯净的领域不变特征。

  • 模块设计:MAD模型包括两个关键模块,一个是假相关生成器(SCG),用于增加源域数据的多样性,另一个是多视图域分类器(MVDC),用于将特征映射到多个潜在空间。这两个模块协同工作,提高了非因果因素的剔除能力。

  • 实验证明:论文通过在六个标准数据集上进行大量实验,证明了MAD算法在目标检测任务中具有最佳的泛化性能,相对于传统方法取得了显著的性能提升。

相关工作

域自适应目标检测(Domain Adaptive Object Detection,DAOD)

目标检测是计算机视觉中的一个重要问题,旨在在图像中定位和分类指定的对象实例。现代目标检测方法可以分为一阶段方法和二阶段方法。传统目标检测方法在实际应用中受到域偏移的困扰,导致性能下降。

为了减轻由领域偏移引起的性能下降,提出了许多域自适应目标检测方法(DAOD),这些方法通过领域对抗学习(DAL)从有标签的源域和无标签的目标域中训练模型,以缓解领域偏移问题。DAOD方法可以分为基于对抗的方法和基于重建的方法。前者引入了领域对抗学习结构来对齐特征图,后者通过生成类似目标域的伪样本来解决问题。

然而,DAOD方法仍然存在一些问题,如需要额外收集无标签目标域数据,以及不能保证特征的因果性。因此,本文希望找

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值