昇腾ACL应用开发之硬件编解码dvpp

1.前言

        在我们进行实际的应用开发时,都会随着对一款产品或者AI芯片的了解加深,大家都会想到有什么可以加速预处理啊或者后处理的手段?常见的不同厂家对于应用开发的时候,都会提供一个硬件解码和硬件编码的能力,这也是抛弃了传统的opencv或者pl等在cpu上话费多的时间进行视频解码和编码,而对于昇腾产品,310一系列产品来说,他也会有自己的数据媒体处理单元,如下图所示:参考学习链接:

昇腾社区-官网丨昇腾万里 让智能无所不及

        

硬件产品结构示意图,内置的有dvpp模块用于数据预处理,AI core用于矩阵、向量等计算;不会占用cpu的资源,刚了解昇腾框架的伙伴可能会用下面的开发顺序进行编写代码:

(1)首先输入视频源的选择:rtsp流、视频、图片等

(2)直接使用opencv的api进行读取,也就是解码,其实opencv读取视频还是蛮快的,读取rtsp确实有一些慢,而且还占用cpu的资源,

(3)使用opencv解码出来之后的图片是,bgr,uint8,NHWC格式的图片,对于不同的模型输入,需要进行转换为模型需要的输入,比如resize缩放图片指定大小,数据格式转换从uint8 到float32 16\以及通道的变换,这一步也是大家的预处理。

(4)送入模型进行推理,大家可以做int8量化之类的操作

(5)模型后处理,对输出的数据进行筛选,获取最终的目标。

(6)opencv直接显示或者数据编码使用ffmpeg或者其他工具进行推流

以下是使用ACL我在整个端到端应用开发时总结的比较优选方案:

(1)使用dvpp进行rtsp和视频的解码,dvpp解码之后的数据为yuv420sp,是在device中的数据,无需内存拷贝,这个过程是将h264/h265的码流解码为yuv的数据,这一过程会在npu硬件执行,但是底层的实现是先通过ffmpeg进行解封装,再进行dvpp解码,内部实现了多线程:参考样例如下:

cplusplus/level2_simple_inference/2_object_detection/YOLOV3_coco_detection_video_DVPP_with_AIPP/src/sample_process.cpp · Ascend/samples - Gitee.com

g_cap_ = new AclLiteVideoProc(g_streamName_);stream是视频路径或者rtsp
ImageData testPic;
AclLiteError ret = g_cap_->Read(testPic);

将解码数据传送到testpic结构体中:

这个ImageDATA 结构体如下:

struct ImageData {
    acldvppPixelFormat format;
    uint32_t width = 0;
    uint32_t height = 0;
    uint32_t alignWidth = 0;
    uint32_t alignHeight = 0;
    uint32_t size = 0;
    std::shared_ptr<uint8_t> data = nullptr;
};

(2)解码之后通过VPC进行图像缩放,由于dvpp解码之后的数据为YUV格式,所以模型转换的时候需要配合aipp,将模型的输入改为yuv输入与模型对齐。

        ImageData resizedImage;
        ret = g_dvpp_.Resize(resizedImage, testPic, g_modelInputWidth, g_modelInputHeight);

(3)将数据直接存入模型中进行推理:

(4)模型的后处理,怎么和原图进行画框,可以将原始的yuv图片转换为opencv的图片进行画框,或者使用frretype直接在yuv上进行画框,参考案例如下:

方法一:将device的原图拷贝到cpu测转换为cv::mat类型进行画框:

        ImageData yuvImage;
        ret = CopyImageToLocal(yuvImage, testPic, g_runMode_);
        if (ret == ACLLITE_ERROR) {
            ACLLITE_LOG_ERROR("Copy image to host failed");
            return ACLLITE_ERROR;
        }
        cv::Mat yuvimg(yuvImage.height * 3 / 2, yuvImage.width, CV_8UC1, yuvImage.data.get());
        cv::Mat origImage;
        cv::cvtColor(yuvimg, origImage, CV_YUV2BGR_NV12);

方法二;直接在yuv上进行绘制目标框图:参考案例如下:

samples: CANN Samples - Gitee.com

(5)将画框后的数据硬件编码为h264文件用于ffmpeg进行推流,编码代码流程参考案例:

samples: CANN Samples - Gitee.com

由于ACL仅支持编码yuv的图片到h264/265所以建议大家可以使用第二种方法进行编码,不需要再次使用ffmpeg进行软件编码,大大可以节约时间。

整个流程可以在原来的软件编码情况下快1.5倍左右。关于ffmpeg推流可以加我学习群或者网上找一些简单的源码推流工具,如果大家有兴趣可以加入a群:855986726

下一章我们继续讲解如何进行多模型串联推理,

HashMap 和 HashTable 都是实现了 Map 接口的哈希表数据结构,但它们之间还是有一些区别的 [^1]。下面是它们的主要区别: 1.线程安全性:Hashtable 是线程安全的,而 HashMap 不是。如果需要在多线程环境下使用 Map,应该使用 ConcurrentHashMap。 2.null值:HashMap 允许 key 和 value 为 null,而 Hashtable 不允许。如果试图将 null 值放入 Hashtable 中,会抛出 NullPointerException。 3.底层数据结构:HashMap 的底层是数组+链表/红黑树,而 Hashtable 的底层是数组+单向链表。 4.迭代器:HashMap 的迭代器是 fail-fast 迭代器,而 Hashtable 的迭代器是 fail-safe 迭代器。 下面是代码演示: ```java import java.util.HashMap; import java.util.Hashtable; import java.util.Map; public class MapDemo { public static void main(String[] args) { Map<String, Integer> hashMap = new HashMap<>(); Map<String, Integer> hashTable = new Hashtable<>(); // 添加键值对 hashMap.put("apple", 1); hashMap.put("banana", 2); hashMap.put(null, 3); // 可以插入 null 值 hashTable.put("apple", 1); hashTable.put("banana", 2); // hashTable.put(null, 3); // 不允许插入 null 值 // 遍历键值对 for (Map.Entry<String, Integer> entry : hashMap.entrySet()) { System.out.println(entry.getKey() + ": " + entry.getValue()); } // 删除键值对 hashMap.remove("apple"); // 使用迭代器遍历键值对 for (Map.Entry<String, Integer> entry : hashTable.entrySet()) { System.out.println(entry.getKey() + ": " + entry.getValue()); } } } ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值