[机器学习]感知机内容体系

一、通过具体应用来召回率,ROC曲线的意义。
(1)召回率
以最接近生活的核酸检测为例,我们以核酸检测阳性为正例。
核酸检测的结果有以下四种情况:
在这里插入图片描述
如果使用专业术语表示,则为以下四种表示方法:
在这里插入图片描述

在新冠病毒检测的情况中,人们希望的是检测结果“宁可错杀一千,不可放过一个”,也就是即使误诊率很高,但追求把所有感染者都找出来。这样也就能引出需要介绍的“召回率”。

首先给出召回率的定义:
召回率(Recall): Recall=TP/(TP+FN)
表示在所有实际为正的类标记样本中,被预测为正标记的样本比例。
实际意义:

结合上述例子。其中的TP就是实际为阳性感染者预测也为阳性感染者,FN则表示实际为阳性感染者但预测为阴性正常。在检测中,人们希望出现FN的情况越少越好,也就是希望“召回率”越大越好,避免因为检测不力而将感染者当成正常人后造成重大影响。

(2)ROC曲线
介绍ROC曲线时,首选介绍FTR(假正例率):FTR=FP/(FP+TN)
ROC曲线:以召回率(Recall)为横坐标,假正例率(FTR)为纵坐标。为了绘制ROC曲线,需要计算Recall和FTR。
ROC曲线画法:
对于给定的测试集,先用模型计算测试集中每个样本的预测值(或概率);然后对这些值按从小到大排序,将排序后的值取一部分作为阈值数组,将数组中每个元素作为阈值。再将测试数据集中每个样本的预测值与阈值比较,大于或等于这个阈值的样本被认为是正样本,小于该阈值的样本被认为是负样本;分别计算出 TP、TN、FN、FP,最后计算出召回率和假正例率。

用ROC曲线比较两种模型优劣:
曲线的包含关系,能包住的性能优(两者没有发生交叉,存在包含关系时)
②比较ROC曲线下面积的值(AUC)
在这里插入图片描述
二、介绍建立感知机模型的思路,求解感知机模型的方法。
感知机是生物神经细胞的简单抽象。
神经细胞结构大致可分为:树突、细胞体及轴突
单个神经元只有两种状态——激活和未激活。
神经细胞的状态取决于输入信号量的大小,每个树突的“权重”、以及阈值的大小。
只当信号量总和超过了阈值时,神经细胞才会被激活。
如图所示:
在这里插入图片描述
再抽象一下:
在这里插入图片描述
所以感知机所含的四个重要部分为:输入,权重,判断,输出。
在这里插入图片描述

下面给出感知机的数学求解推导过程:
在这里插入图片描述

单层感知机的局限性:
感知机不能将以下图片中的黄色图片与蓝色三角形分开。
在这里插入图片描述

不能处理左边图片的原因在于,感知机对输入变量始终都是在进行线性变换,没有办法处理灵活的异或问题,因此我们需要引入非线性变换——激活函数。
有以下四种激活函数供了解参考:
在这里插入图片描述

对于右边的图片,我们可以通过加一层(称为隐藏层),将二维数据升维到三维中进行处理。
在这里插入图片描述

3、描述感知机模型与神经元的联系。
感知机仅对线性可分的数据进行正确的分类,**感知机之所能向神经细胞一样做到“感知”,是因为它使用了“激活函数”来作非线性变换。如果在输入输出层之间加入多个隐藏层,形成多层感知机就能解决该问题。**但如何训练这样的多层感知机在当时是一件困难的事情。
在Geoffrey Hinton教授提出了深度学习和模型的训练方法之后,点燃了神经网络的热情。
多层感知机可以看做是深度神经网络的基础,输入样本与隐藏层、隐藏层与隐藏层之间的神经元都是基于全连接的,而很多深度学习神经网络都是基于多层感知机而构建的。
如图为基于全连接的多层感知机模型:
在这里插入图片描述
本文图片来源网络,其中一部分是学习时制作的PPT的截图,如有不足或错误欢迎交流指正。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值