文章目录
摘要:
镁铁-超镁铁侵入杂岩体具有承载镍-铜-铂族元素(PGE)硫化物矿床的巨大潜力。然而,通过野外调查对大面积上的小露头进行绘图既耗时又费力。本研究利用具有适度光谱分辨率和非常高空间分辨率的WorldView-3(WV-3)数据,结合光谱指数和空间-光谱变换器(SSTF)深度学习方法,在中国甘肃省北山地区的罗托山地区绘制镁铁-超镁铁单元。基于已知地点影像中提取的代表性反射率特征,三波段比值的假彩色合成图和新提出的短波红外(SWIR)光谱指数提供了对镁铁-超镁铁岩石的合理划分。SSTF方法有助于绘制小规模镁铁-超镁铁露头的发生,并定义了更清晰的边界,特别是对于在米尺度上的小单元。此外,SSTF方法对可能影响露头反射率的碳酸盐透镜的出现不敏感。野外调查和实验室样品分析证实了该地区镁铁和超镁铁岩石具有巨大的金属矿物潜力。在野外验证过程中确认了七个与镁铁-超镁铁侵入体相关的远景,其中四个在扫描电子显微镜和能量色散光谱仪观察到的样品中包含了黄铜矿、pentlandite、黄铁矿和铬铁矿等金属矿物。本研究证明了在WV-3多光谱数据上应用的光谱指数和SSTF深度学习方法对于区分小型镁铁-超镁铁侵入岩(<100 m)以寻找局部矿化是有用的。
引言:
镁铁镍(Ni)、铜(Cu)和铂族元素(PGE)硫化物矿床通常发生在镁铁-超镁铁岩套中。这些矿床对全球矿业贡献巨大,大约包含了56%的镍、5.5%的铜和96%的PGEs。镁铁硫化物矿床与镁铁或超镁铁岩石之间的关联已有详细记录。镁铁镍-铜-PGE硫化物矿床的形成归因于镁铁或超镁铁岩浆中液态硫化物滴的分离和富集,以及亲铜元素从硅酸盐熔体进入这些硫化物的分配。因此,镁铁-超镁铁岩石被认为是可能存在镍-铜-PGE硫化物矿床的关键指标。
研究区和数据收集:
工作区和地质学
北山位于中国西北,横跨新疆、甘肃和内蒙古。这个半干旱地区适合稀疏植被的生长,如草本植物和灌木。多样的地质、构造和成矿环境使北山成为中国最大的矿产资源带之一。在这个带中已经发现了超过90个矿床(主要是金、铜-镍和铅-锌)。其中超过20个矿床是中到大型的。北山带中普遍存在承载镍-铜-钴矿床的镁铁-超镁铁侵入体或杂岩体。在甘肃省北山带已经绘制了超过70个这样的杂岩体。最近的一个发现是位于北山带的泊北超大型镍-铜-钴矿床,由几个同源的镁铁-超镁铁侵入体承载。该带中其他一些著名的矿床包括红石山铬矿床和黑山镍-铜矿床。因此,北山带被认为是与镁铁-超镁铁侵入体相关的重要的矿产资源区。
数据和测量:
WorldView-3多光谱数据:为研究区获取了两套WV-3数据(标准级别的2A产品),没有云或雪,植被覆盖非常少(<1%)。数据集包含从VNIR到SWIR的16个波段。波段位置见图2。SWIR波段的空间分辨率为7.5米,而VNIR波段的空间分辨率为2.0米。SWIR数据被空间重采样到2.0米,并与VNIR数据配准。高空间和适度光谱分辨率确保了在几米尺度上对小露头的准确提取和识别。
样品和实验室测量:在研究区,共收集了37个手标本,包括辉长岩和辉辉岩。所有样品的表面积都大于10×10厘米,每种样品至少有一个风化表面和一个新鲜表面。
方法:
预处理WV-3图像
WV-3辐射数据使用Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)算法转换为表面反射率,参数包括617公里的传感器高度、1900米的地面海拔、亚北极夏季大气模型、农村气溶胶模型、40公里的初始能见度和无光谱抛光。反射率数据随后被地理参考到本地坐标系,并与研究区现有的1:10,000比例尺的数字地形图配准。
岩石单元的光谱特征
使用约翰霍普金斯大学(JHU)光谱库中的光谱作为初步参考,以区分不同类型的镁铁-超镁铁岩石。根据当地的地质环境,选择了五种镁铁-超镁铁(辉绿岩、玄武岩、辉长岩、辉石岩和苦橄岩)和四种非镁铁岩石类型(石英闪长岩、花岗岩、花岗闪长岩和闪长岩)用于识别潜在的光谱特征。含有铁氧化物、辉石和角闪石的镁铁岩石,在0.7和1.0微米附近显示出铁离子和亚铁离子的吸收特征。一些镁铁岩石,如辉辉岩和辉长岩,呈现出角闪石和黑云母在2.32和2.38微米的Fe-OH和Mg-OH吸收特征。闪长岩从0.7到1.2微米有一个宽的吸收特征,另一个突出的特征在2.33微米附近。含有角闪石和绿帘石的岩石在2.25、2.32和2.39微米处显示出吸收特征。此外,某些岩石类型(例如,花岗岩和石英闪长岩)的风化表面表现出2.20微米的Al-OH的诊断吸收特征,以及0.49和0.87微米的Fe3+特征。
尽管WV-3数据仅包含从VNIR到SWIR的16个波段,但已被证明在检测矿物和绘制米尺度区域的岩石单元方面是有效的。WV-3数据已被用于识别典型的蚀变矿物,包括含羟基、含铁氧化物和碳酸盐矿物。WV-3的VNIR波段已被证明对通过区分含亚铁和含铁的矿物来绘制岩石单元是有用的。具体来说,含亚铁的铁矿物,如绿帘石和绿辉石,可以通过VNIR波段3到SWIR波段4的明显反射率下降来识别。含铁的铁矿物显示出从VNIR波段2到VNIR波段4和从VNIR波段7到SWIR波段1的下降。SWIR波段可以用来检测粘土、绿帘石、绿辉石和方解石/白云石中Al-OH(2.20微米)、Fe-OH和Mg-OH(2.30+微米)以及CO32-(2.16、2.32–2.35微米)的吸收特征。
本研究旨在确定适当的VNIR或SWIR波段和光谱指数,以在工作区绘制镁铁-超镁铁岩石。
绘制镁铁-超镁铁单元
光谱指数
:使用可以增强矿物(例如,铁氧化物和含羟基矿物)光谱特征的光谱指数,以突出镁铁和超镁铁岩石的空间分布。用于计算光谱指数的波段基于先前的研究以及在JHU光谱库中可用的矿物光谱分析。
基于现有的地质图(图1c),本研究选择了11种主要岩石类型,从中提取了代表性光谱进行图像光谱分析。所选岩石类型的光谱特征在WV-3的16个波段中显示出显著差异(图3)。基于图2所示的光谱特征,计算了三个波段比值(SWIR波段6/8、SWIR波段5/3和VNIR波段3/2),然后合并到假彩色合成图像中,以增强岩石类型之间的差异。这三个波段比值被用来识别当地岩石类型的三个组成指标:(1)辉辉岩和辉长岩等镁铁岩石中的Fe-OH和Mg-OH,(2)闪长岩和橄榄岩中的亚铁离子,以及(3)砂岩、片岩和花岗岩中的铁离子。
为了区分镁铁岩石(例如辉长岩、辉绿岩和辉石岩)和非镁铁岩石(例如闪长岩和花岗岩),提出了光谱指数(SWIR波段4 + SWIR波段6)/(2 × SWIR波段5)。预计这个指数将增强镁铁和非镁铁岩石之间的光谱差异,因为非镁铁岩石的SWIR波段4到SWIR波段6的光谱斜率比镁铁岩石的相对平坦斜率要陡。
使用深度学习分类岩石单元
:
提出了一种空间-光谱变换器(SSTF)用于最终的岩石类型分类任务(图4)。SSTF是一种称为“变换器”的深度学习方法,在各种应用中展示了强大的性能。变换器方法起源于自然语言处理(NLP)和计算机视觉(CV)图像分析,具有强大的建模能力。变换器网络使用编码器和解码器架构,并且完全依赖于与卷积和递归神经网络截然不同的自注意力机制。它将图像视为序列数据,并构建具有相同架构的编码器和解码器层。编码器将输入数据转换为带有位置信息的序列表示,然后解码器将转换后的表示转换为输出序列。编码器和解码器通过注意力机制连接,注意力机制自动调整不同位置之间的关系,并专注于需要关注的重点区域。注意力机制的本质是通过适应性权重对像素进行分类,从而使网络可以为每个类别形成一个特征图。
为了表示输入和输出之间的长期依赖关系,通过以下形式的查询(Q)、键(K)和值(V)的向量函数计算注意力矩阵:
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}}\right) V Attention(Q,K,V)=softmax(dkQKT)V
其中softmax是一个归一化函数,将向量转换为0到1范围内的值,dk代表键的维度,并且是与K相关的缩放因子。此外,变换器采用了多头注意力机制,允许并行处理并加速分类。
在本研究中,WV-3数据以两种方式输入到神经网络中。一种是使用基于7×7空间窗口的3D Gabor滤波进行空间变换,另一种是使用视觉变换器(ViT)网络进行每像素光谱嵌入,该网络通过分组光谱嵌入(GSE)和跨层自适应融合(CAF)模块进行了修改(适用于多光谱数据)(图4)。
为了使网络更适合高分辨率的WV-3数据,我们通过添加一个块机制来修改变换器,以改进光谱和空间信息的提取(图4)。SSTF采用了GSE和CAF两个块,这两个块由Hong等人于2022年提出。虽然普通的变换器方法通常对光谱图像应用逐波段分类,但SSTF使用的GSE块可以学习像素级表示,并解决相邻波段之间的光谱相关性(Hong等人,2022)。因此,这种策略更适合捕捉WV-3数据的光谱特征,如光谱峰和谷。CAF块旨在增强网络层之间的连通性。此外,SSTF包括一个三维Gabor滤波器的特征提取块,用于检测数据的光谱和空间变化。在这个Gabor块中,定义了不同的频率和方向。基于高斯核函数的Gabor滤波有助于我们从图像中捕获更具代表性的信息(例如,清晰定义的纹理)。Gabor特征的优点在一系列研究中已经得到证明,可以提高分类性能(Hu等人,2018;Huang等人,2022)。鉴于本研究的任务,我们使用了一个多类分类的框架。分类器是使用未经任何光谱转换的反射率数据进行的。
表1列出了每个训练类别(岩石类型)选择的像素数量。虽然原始地质图包含了18种岩石类型(图1c),但我们将相似的岩石类型手动合并,只解决成分变化。因此,总共选择了11个类别作为感兴趣区域。
每个岩石类型的分类精度是基于交叉验证计算的,并构建了一个混淆矩阵来描述不同岩石类型之间的误报。对于精度评估,每个标记区域内的像素被随机划分为训练集(80%)和测试集(20%)。
野外验证:
通过实地考察和样品的实验室分析来验证两种绘图方法的准确性。测量了这些样品的反射率,包括新鲜和风化的样品表面。总共收集了37个岩石样品,包括辉长岩、辉辉岩、橄榄岩和橄榄辉长岩,来自22个地点。基于岩石类型和手标本的视觉评估,选择了25个(共37个)含有硫化物的样品进行进一步分析。为岩相分析准备了薄片或抛光段。
结果:
从光谱指数检测镁铁-超镁铁露头
构建了三个波段比值的假彩色合成图(红色=SWIR波段6/8用于Fe-OH、Mg-OH;绿色=SWIR波段5/3用于Fe2+;蓝色=VNIR波段3/2用于Fe3+)(图5b)。镁铁-超镁铁单元,如辉长岩和辉辉岩,由于存在辉石、绿帘石和角闪石,呈现红色到暗红色。辉绿岩由于缺乏强烈的Fe2+吸收,导致SWIR波段5/3值相对较高,因此呈现浅到暗绿色。此外,表现出强烈Fe3+吸收特征的花岗岩,由于其高VNIR波段3/2值,呈现为蓝色。与传统的真彩色图像(图5a)相比,波段比值的假彩色合成图像显著增强了岩石类型,并突出了镁铁-超镁铁露头的发生,特别是在研究区东北部。此外,自然彩色图像和传统地质图上未绘制的小型辉长岩露头,与传统地质图上未绘制的大型辉绿岩岩脉在波段比值假彩色合成图像中被区分开来(图5b)。
SWIR光谱指数(SWIR波段4 + SWIR波段6)/(2 × SWIR波段5)的结果传达了类似的信息,除了镁铁-超镁铁岩石在图像上被表示为明亮区域(图5c),而其他岩石类型,包括花岗岩和辉绿岩,显示出相对较低的指数值。这个光谱指数为快速绘制镁铁-超镁铁露头提供了一个方便的工具。然而,当存在碳酸盐透镜时,会发生误报。这些主要分布在研究区的东南部(图5c中的黄色箭头)。相比之下,波段比值的假彩色合成图像(图5b)显示这些透镜不是镁铁-超镁铁岩石。
使用SSTF分类方法的岩石学绘图结果
图6a显示了使用SSTF深度学习方法获得的11种岩石类型的彩色编码分类结果。图6b显示了在真彩色WV-3图像上叠加的镁铁-超镁铁岩石(辉绿岩和辉长岩)的分布。结果显示了更精确的岩石学边界划分,并在米尺度上检测到小露头。与传统地质图(图1c)相比,SSTF生成的花岗岩、砂岩和闪长岩的绘图非常相似。对于在地质图上被标记为辉长岩、辉绿岩、片岩、泥岩和石灰岩的单元,SSTF分类显示出更多的内部变化,从而能够区分成分细节。在图6中被标记为大型侵入体(D8和D9)的单元,在1:50,000地质图上被充分绘制,为SSTF方法的有效性提供了额外的支持。更重要的是,SSTF分类揭示了许多在地质图上未显示的小型镁铁-超镁铁侵入体。例如,位于研究区东部的大型岩脉(图1中)被绘制为不同的镁铁单元(D4和D5)。东北部的小型侵入体(D6和D7)被分开,并被准确分类为辉长岩,这比之前的地质图有显著改进,在之前的地质图中它们与相邻单元合并。这种改进的区分很重要,因为它允许有效划分聚集的小露头。此外,SSTF在研究区西部绘制了小型镁铁岩露头(D1、D2和D3),所有这些露头都小于100米,这些在1:50,000地质图中被误识别为花岗岩和片岩。最重要的是,影响光谱指数图的碳酸盐透镜(图5中的黄色箭头)对SSTF分类结果没有影响。
总的来说,结果表明SSTF在提供更详细和准确的地图以及清晰的岩石学边界方面优于波段比值和光谱指数。尽管这三种方法都能识别镁铁-超镁铁岩石,但光谱指数方法有一些限制。首先,它在为不同岩石类型定义清晰边界方面效果不佳,特别是对于小露头。此外,它错误地将研究区东南部的某些碳酸盐透镜识别为镁铁-超镁铁(图5c中的黄色箭头)。最后,光谱指数方法缺乏识别除镁铁-超镁铁岩石以外的所有岩石单元的敏感性,表明其作为单一波段比值技术的局限性。
SSTF图像和波段比值的假彩色合成图像都成功地划分了镁铁-超镁铁侵入体的位置,并取得了一致的结果。SSTF图像中更多长英质岩石单元的岩石学边界比假彩色合成图像中的边界更加清晰,表明深度学习监督分类方法在定义不同岩石类型之间的边界方面效果更好。SSTF在区分具有微妙光谱差异的岩石单元方面的有效性也可以通过其区分西部花岗岩斑岩和花岗岩的能力来说明(图6a中的绿线内)。在波段比值的假彩色合成图像中,这些花岗岩岩石呈现为类似的蓝绿色。SSTF输出图像在露头尺寸较小时看起来有些噪声。例如,闪长岩露头(图6a中的白色多边形内)被识别为散布的闪长岩和辉绿岩像素簇。这些小簇代表了该地区广泛分布的辉绿岩岩脉。
使用20%训练像素对SSTF方法进行交叉验证,得到了95.86%的总体精度和0.95的Kappa系数(表2)。七个类别(包括砖红色花岗岩、深灰色闪长岩、辉长岩、砂和砾石、砂岩、泥岩和石灰岩、肉红色花岗岩)的精度都大于95%。辉绿岩、片岩和花岗岩斑岩的精度范围在93.72到94.32%之间,而灰色闪长岩的精度最低,为83.20%。辉绿岩和灰色闪长岩之间的混淆最高,因为它们在VNIR波长范围内的Fe2+/Fe3+矿物(例如绿泥石和角闪石)的光谱特征相似,而在2.16到2.33微米的Fe-OH和Mg-OH的光谱特征不明显。
野外验证绘图结果
进行了实地考察,以评估通过波段比值假彩色合成和SSTF方法获得的绘图结果的准确性。总共检查了七个小型镁铁-超镁铁侵入体(图7)。它们都没有在传统地质图上绘制。这些侵入体的大小从1000到70000平方米不等,展示了包括辉长岩、辉辉岩、辉石橄榄岩和橄榄辉长岩在内的不同岩石类型,具有强烈的风化(图7)。其中四个地点显示出明显的矿化,新鲜岩石表面上有明显的黄铜矿存在。对这些侵入体进行了进一步的实验室分析,以确定它们的矿物学、光谱和蚀变特性。
在研究区西南部发现了三个小型镁铁-超镁铁岩石(D1、D2、D3)。D1(直径80米)代表了一个新的镁铁-超镁铁单元,通过薄片研究确认为强烈风化、蛇纹石化的辉辉岩。其表面风化成暗红色(图7a),而新鲜表面为黑色。D2(直径60米)和D3(直径30米)都是辉长岩单元(图7b),由于风化,暗色矿物褪色。观察到D1和D3在地质图上被绘制为花岗岩,而D2被绘制为片岩(图1c)。以前的传统地质调查很可能由于它们的小尺寸而遗漏了所有这三个侵入体。
在研究区东部发现了两个镁铁-超镁铁侵入体(D4和D5)。D4侵入体被识别为含有35%橄榄石的橄榄辉长岩,而D5侵入体是具有异质内部岩相的辉长岩,表面风化成灰色。如图8a所示,D4的新鲜表面光谱在0.91微米附近显示出超镁铁角闪石的特征吸收,这与显微镜观察一致。相比之下,D4的风化表面在2.32微米附近显示出蛇纹石的特征吸收。在橄榄石的裂缝和边缘处形成了蛇纹石,其中游离铁形成了磁铁矿。在D5的新鲜和风化表面的光谱中观察到2.35微米处的特征吸收,表明存在绿帘石。D4和D5侵入体可能因为它们的小尺寸而没有在地质图中显示出来。D4侵入体被绘制为覆盖大面积的辉绿岩,D5侵入体被绘制为片岩(图1c)。
在研究区东北部发现了两个新侵入体(D6和D7)。D6侵入体直径不到100米(图7e),被识别为辉石橄榄岩。D6样品的新鲜表面呈深绿色,普遍含有黄铜矿。D7侵入体(直径约55米)是黑色的辉长岩(图7f),表面可见黄铜矿。在薄片中,它被分类为橄榄辉长岩(图9b)。如图9a所示,由于Mg-OH振动的泛音,近2.23微米处有一个狭窄且浅的吸收特征,这表明存在绿帘石。此外,还有一个深吸收特征在2.35微米处,特征为绿帘石和斜方角闪石。这两个侵入体都被绘制为大面积的辉绿岩的一部分。它们都没有在1:50,000地质图上被找到(图1c)。
讨论:
WV-3影像在岩石学识别中的有效性
传统的地质调查受到其高成本的限制,并不总是能够有效地绘制小露头,正如1:50,000比例尺地质图中遗漏了一些露头(D1-D7)所说明的那样。因此,有必要使用高分辨率遥感影像来指导进一步的勘探。WV-3数据的高空间分辨率允许绘制相对较小的岩石露头。热红外数据(例如,波长范围为7.55–12.5微米的)在检测小露头方面无效,因为需要更低的空间分辨率。
实验室测量光谱与影像光谱之间的关系
了解岩石矿物学和光谱学对于选择适当的方法使用卫星数据进行岩石学绘图至关重要(Karimzadeh和Tangestani,2021)。收集可以与空间传感器光谱进行比较的现场样品光谱是有用的。一些岩石类型的反射率很低(<20%)(图8a、9a),这可能会使匹配光谱变得更加困难。尽管影像光谱与实验室光谱的匹配可能会受到大气效应、仪器效应、空间分辨率、混合像素和风化的影响(Yu等人,2012),但例如风化辉长岩的实验室光谱形状与WV-3辉长岩光谱是可比的(图3)。这表明FLAASH算法可以准确地将WV-3辐射数据转换为反射率(Berk等人,1998;Mars,2018)。
深度学习和传统光谱指数的影响因素
本研究表明,光谱指数方法在绘制大型镁铁-超镁铁侵入体方面是有效的,尽管存在一些限制。具体来说,碳酸盐单元的存在被发现会干扰光谱指数结果。碳酸盐透镜的WV-3光谱在SWIR波段4处显示出高反射率,在SWIR波段8处显示出低反射率,这影响了光谱指数(SWIR波段4 + SWIR波段6)/(2 × SWIR波段5)。需要进一步的工作来最小化碳酸盐对光谱指数结果的影响。
本研究展示了使用波段比值的假彩色合成图像来检测镁铁-超镁铁岩石并绘制大部分岩石学边界的效率。然而,SSTF方法是一种更先进的监督方法,依赖于用于绘图的训练样本的准确性。值得注意的是,碳酸盐透镜在假彩色合成图像或SSTF结果中都没有被定义为镁铁-超镁铁岩石。
SSTF分类结果的高精度表明了深度学习方法在岩石学绘图中的可靠性。与其他两种方法相比,SSTF分类方法允许更详细地识别具有更大内部变化的岩石单元。然而,分类精度可能会受到矿物学相似的岩石类型的影响。例如,由于VNIR波长范围内Fe2+/Fe3+的光谱特征相似,以及Fe-OH和Mg-OH的光谱特征较弱,西北部的灰色闪长岩在很大程度上与辉绿岩混淆。确定的是,由深度学习算法生成的分类图的精度在很大程度上取决于用于训练的样本的质量。在本研究中,训练样本是基于1:50,000地质图和以前的地质知识收集的。因此,结果可能存在一定的不确定性。
矿化潜力
本研究成功地识别了地质图中缺失的几个镁铁-超镁铁露头。这导致了四个含有Cu-Ni-PGE矿化的镁铁-超镁铁侵入体的发现。这些是含有黄铜矿的不同岩石类型的侵入体,包括辉长岩、辉辉岩和辉石橄榄岩。通过SEM和EDS数据分析确认了金属矿物的存在。
在所有D4、D5、D6和D7侵入体的岩石样品中发现了黄铜矿,这是一种铜铁硫化物矿物。D4中的金属矿物主要是黄铁矿、黄铜矿和少量铬铁矿,它们沿黄铜矿裂缝发育(图8b)。D5显示出更明显的矿化,包括pentlandite、黄铁矿、黄铜矿和磁黄铁矿(图8c)。黄铜矿呈现出自形晶粒状纹理,而黄铜矿沿黄铁矿边缘发育(图8d)。pentlandite通常出现在黄铁矿中,具有异形粒状纹理。D6中的金属矿物主要是pentlandite、黄铁矿、黄铜矿、磁黄铁矿和一些铬铁矿。pentlandite和黄铜矿呈现出自形至亚自形晶粒状纹理,而磁黄铁矿和黄铁矿是后来结晶的。D6样品中的尖晶石在背散射图像中发育出明显的反向环带结构(图9f)。根据EDS,核部较亮的区域是含铁铬尖晶石,即铬铁矿,富含Fe-Cr,含有少量钛(图9g)。边缘较暗的区域富含Mg-Al,是镁铝尖晶石,铬铁含量较少(图9h)。相比之下,D7样品中的矿化程度较低,主要含有黄铁矿、黄铜矿和磁黄铁矿(图9d)。
本研究表明,光谱指数和深度学习方法对于使用WV-3数据在北山地区寻找含Ni-Cu-PGE的镁铁-超镁铁侵入体是有用的。该地区的镁铁-超镁铁侵入体与Cu-Ni矿化相关,通常小于1平方公里(Tang等人,2012)。值得注意的是,并非该地区所有的镁铁-超镁铁侵入体都含有经济价值的Ni-Cu-PGE矿化(Guo等人,2017)。
结论:
本研究表明,使用WV-3 VNIR和SWIR多光谱数据和光谱指数以及空间-光谱变换器(SSTF)深度学习方法,可以检测到相对较小的镁铁-超镁铁岩石露头。WV-3数据的光谱分辨率足以区分研究区中的镁铁-超镁铁岩石和其他岩石类型,其高空间分辨率有助于绘制较小的侵入体。
三个波段比值的合成(以红色显示SWIR波段6/波段8用于Fe-OH和Mg-OH;以绿色显示SWIR波段5/波段3用于Fe2+;以蓝色显示VNIR波段3/波段2用于Fe3+)和新提出的SWIR光谱指数(SWIR波段4 + SWIR波段6)/(2 × SWIR波段5)为检测镁铁-超镁铁岩石提供了简单但有效的方法。然而,深度学习方法证明更为强大,并且比光谱指数衍生图像能够更详细地区分不同的岩石类型。最重要的是,SSTF分类方法没有受到影响光谱指数图的碳酸盐透镜的影响。岩石类型的接触也通过SSTF分类更清晰地定义。本研究表明,光谱指数和深度学习方法为检测镁铁-超镁铁露头提供了实用的方法。然而,基于注意力的SSTF方法更有效,并且实现了更高的分类精度。