A review of machine learning in processing remote sensing data for mineral exploration 中文译文

在这里插入图片描述


机器学习在处理遥感数据进行矿产勘探中的综述

Hojat Shirmard a, Ehsan Farahbakhshb,*, R. Dietmar Müllerc, Rohitash
Chandrad,e a 伊朗德黑兰大学工程学院矿业工程系 b 伊朗科技大学矿业工程系 c
澳大利亚新南威尔士大学地球科学学院EarthByte Group d 澳大利亚新南威尔士大学数学与统计学院 e
新南威尔士大学UNSW数据科学中心

关键词:机器学习 遥感 矿产勘探 地质测绘 蚀变测绘



摘要

近年来新发现的矿床数量下降和对不同矿产需求的增加,促使勘探地质学家寻找更有效和创新的方法来处理矿产勘探每个阶段的不同类型的数据。作为首要步骤,各种特征,如岩性单元、蚀变类型、结构和指示矿物,被测绘以帮助决策定位矿床。不同类型的遥感数据集,如卫星和航空数据,使其能够克服与测绘地质特征相关的常见问题。从不同平台获得的遥感数据量的快速增加,鼓励科学家开发先进、创新和稳健的数据处理方法。机器学习方法可以帮助处理广泛的遥感数据集,并确定诸如反射率连续体和感兴趣特征之间的联系。这些方法在处理光谱和地面真实测量与噪声和不确定性方面是稳健的。近年来,许多研究通过补充地质调查与遥感数据集进行,这在地球科学研究所中现在很突出。本文提供了一些流行和最近建立的机器学习方法在处理不同类型的遥感数据方面的实施和适应的全面综述,并调查了它们在探测各种矿床类型中的应用。我们展示了结合遥感数据和机器学习方法在测绘对提供潜在地图至关重要的不同地质特征方面的强大能力。此外,我们发现有范围先进的方法,如深度学习,处理新一代提供高空间和光谱分辨率的遥感数据,以创建改进的矿产成矿性图。

1. 引言

在矿产勘探中定位与目标矿化相关的地质特征是基础步骤之一,通过提供和调查地质图。这些图涉及不同的特征,如岩性单元、蚀变类型、结构和指示矿物(Brimhall等人,2005;Ninomiya等人,2005;Rowan等人,2006;Gad和Kusky,2007;Beiranvand Pour等人,2019a)。随着时间的推移,地质测绘方法已经发展;如今,遥感数据和先进的数据分析,如机器学习的结合,越来越受到关注(Cracknell和Reading,2014;Harvey和Fotopoulos,2016;Bachri等人,2019;Chakouri等人,2020)。这种结合帮助地质学家克服了传统方法的常见挑战,如主观判断,可以提供可靠的地图,避免在贫瘠区域勘探上浪费资金。与测绘地质特征相关的有许多困难,特别是在难以进入的地区。传统上,这项任务是由专家知识进行的,通过调查线、导航系统和现场数据收集。此外,实地工作受到气候条件、地形、领域专家和操作方法的影响(Latifovic等人,2018;Sang等人,2020)。不同空间、光谱和时间分辨率的遥感数据使地质学家能够为大多数挑战和不足提供解决方案,这些挑战和不足涉及地质现场测绘(Harris等人,2011;Beiranvand Pour和Hashim,2016;Dai等人,2017)。根据数据类型和勘探阶段,可以在小规模或大规模上创建地质图(Usui和Okamoto,2010;Bartalev等人,2014)。遥感技术在地质调查、测绘、分析和解释中可以发挥重要作用。它提供了一个独特的能力,以调查地球表面的地质特征(Al-Nahmi等人,2017)。遥感多光谱成像(MSI)历史上一直用于地质形态和岩性单元的视觉分析(Goetz和Rowan,1981)。早期的航空成像光谱仪(AIS)原型研究证明了它们检测不同特征的能力,如指示矿物(Asadzadeh和de Souza Filho,2016)。使用卫星图像测绘地质特征已经随着多光谱和高光谱遥感仪器的最新进展而扩展,如增强型主题制图仪加(ETM+)、陆地成像仪(OLI)、先进星载热发射和反射辐射计(ASTER)和Hyperion(Rezaei等人,2020)。遥感数据和数字图像处理方法的创新为地质测绘改进提供了新的见解(Bachri等人,2019)。岩性识别(Leverington和Moon,2012;Black等人,2016;Testa等人,2018;Metelka等人,2018;Ninomiya和Fu,2019)、蚀变Rowan等人(2006)、Kratt等人(2010)和结构测绘Raharimahefa和Kusky(2009),以及界定岩石和矿物Mahanta和Maiti(2018)已经通过处理由航空到星载仪器获得的光谱图像成为可能。从不同平台获得的遥感数据的多样性和地面测量的空前增长,使科学家能够提供创新和有效的数据处理方法(Ali等人,2015)。过去几十年中开发了大量的图像处理方法,用于识别、区分和增强特征,如岩性单元、蚀变带和结构,以帮助使用遥感数据发现矿产(Shirmard等人,2020)。图像处理方法主要用于增强、特征提取和检测、分割或分类、融合、变化检测和卫星图像的压缩(Asokan等人,2020)。这些任务是通过应用各种数学算法来提取有用信息(Babbar和Rathee,2019)进行的。计算能力的丰富和大数据及机器学习的出现帮助地质学家克服了他们在矿产勘探的不同阶段需要处理的问题。数学地质学家已经采用了先进的计算机和软件工具,用于数据插值(例如,使用地质统计方法)(van der Meer,1994)、绘制奇点(Cheng,1999)、分离异常区域(Cheng,2007)和集成数据层(Farahbakhsh等人,2020b)。通过数字分析和新的数据挖掘方法获得的新知识极大地受益于人类决策。作为人工智能子域的机器学习被认为是可靠的,因为它可以准确高效地分类遥感图像(Maxwell等人,2018)。机器学习与其他方法的结合,如地质统计学,也可以帮助分析遥感数据(Varouchakis等人,2021)。然而,这种结合在矿产勘探中较少被考虑。机器学习可以处理高维数据,并绘制具有复杂特征的特征(Maxwell等人,2018)。遥感数据和机器学习算法的结合使用已经被证明可以促进和改善矿产勘探。机器学习方法在遥感数据分析领域引起了越来越多的兴趣,作为解决地质或矿产勘探问题的解决方案(Bachri等人,2019)。鉴于机器学习和深度学习方法的快速发展,提供这一领域工作的发展路线图是重要的。本文提供了一个全面综述,应用和采用机器学习方法在遥感数据处理中建模地质模式和探索矿床。首先,我们讨论了在勘探地质学家社区中流行的遥感数据的特征,这些数据由卫星、飞机、无人机和地面仪器获得。其次,我们回顾了遥感数据在测绘岩性单元、蚀变类型、结构和指示矿物方面的应用,这些是发现矿床的关键特征。第三,我们着眼于最流行和最近使用的机器学习方法在处理遥感数据方面的进展,重点关注矿产勘探。在我们的研究中,我们将机器学习方法分类为五组,包括降维、分类、聚类、回归和深度学习方法。最后,我们讨论了挑战,并强调了鉴于我们综述的跨学科重点,潜在的未来工作。本文提供了该领域发展的路线图,以及一些最近深度学习方法,这些方法以前没有用于遥感,如图深度学习方法、贝叶斯深度学习、变分自编码器,以及其他新方法,如变换器递归神经网络。

2. 方法论

我们首先提供一个分类方案,将不同的机器方法进行分组,然后呈现与矿产勘探行业相关的机器学习方法的文献综述。我们回顾了那些展示了这些方法在遥感数据处理中通过检测地质目标特征的应用的出版物。用于在Google Scholar和Scopus上搜索文档的主要关键词包括“机器学习”、“遥感”和“矿产勘探”,这是根据专家咨询和根据先前的研究确定的。此外,我们使用适当的关键词搜索专注于应用机器学习方法以划分地质目标特征的文档,包括岩性单元、蚀变类型、结构和指示矿物,这些是已知的矿产勘探中可以利用遥感数据进行测绘的关键元素。我们使用不同的关键词绘制了该主题上出版物的频率。图1a显示了使用关键词“机器学习”和“遥感”在Scopus研究出版物数据库中搜索文档获得的近年来出版物的数量。图1b显示了使用包括“机器学习”、“遥感”和“矿物”的关键词的出版物数量。图1c显示了使用包括“机器学习”、“遥感”和“矿产勘探”的关键词的出版物数量,这些是本综述论文的范围。正如这些图表所示,在过去十年中,关注在处理遥感数据中应用机器学习方法的出版物数量持续增加。遥感是一个广泛的领域,有着广泛的应用,这些研究中只有一小部分与矿产勘探有关。尽管图1c中的出版物数量远低于图1a,但两者都显示出不断上升的趋势,表明遥感数据和机器学习方法的结合是一个热门话题,并且逐渐受到行业专家和研究人员的关注。图1c中的低出版物数量还揭示了在检测矿床方面开发遥感和机器学习方法的应用存在差距,潜在地有利于勘探地质学家社区。

3. 遥感数据

我们的重点是回顾和分类通常用于测绘地质特征的遥感数据,特别是与矿化相关的特征,基于以前的研究。数据获取平台包括卫星、航空和地面仪器(Prost,2014;Toth和J´o´zk´ow,2016)。我们根据平台总结了不同流行遥感数据在矿产勘探中的特征,见表1。

3.1. 卫星数据

通常,卫星数据集是由被动和主动遥感系统获取的,它们的区别在于用于收集数据的能量来源。被动系统依赖于外部来源的环境能量,主要是地球上的太阳光,而主动系统则产生自己的能量。光学和雷达(无线电检测和测距)数据,被归类为被动和主动遥感数据,构成了用于地质测绘的最重要数据类型。光学传感器测量电磁谱的一小部分波长的强度,处理后的电子信号被称为通道(Lee等人,2020)。另一方面,雷达遥感系统在微波部分的电磁谱上工作,定义为1毫米(mm)到1米(m)之间的波长(Zhou和Guan,2011)。接下来,我们回顾这两种数据类型在测绘用于探测潜在矿化区域的重要特征。

3.1.1.

光学数据 Landsat卫星是最有名的提供光学数据的卫星,并且在地质测绘中已被广泛使用。它们已经连续监测了地球表面四十多年,以满足各种信息和数据需求(Wulder等人,2008)。在这些卫星中,Landsat 5、Landsat 7和Landsat 8近年来对勘探地质学家测绘不同地质特征更感兴趣。Landsat 5于1984年发射,除了多光谱扫描仪(MSS),它还携带了主题制图仪(TM)传感器。TM传感器在可见光、短波红外和热区域的七个波段收集数据。TM传感器的空间分辨率为热波段120 m,其他波段为30 m(Banskota等人,2014)。Landsat 7于1999年4月15日发射,携带ETM+传感器。它在八个光谱波段收集数据,具有不同的空间分辨率,包括可见光和近红外(VNIR)波段1-4和短波红外(SWIR)波段5和7,空间分辨率为30 m,全色波段8的空间分辨率为15 m。热红外波段6提供60 m的空间分辨率(Rajan Girija和Mayappan,2019)。地质学家使用短波红外波段受益,因为它们对土壤和岩石含量变化敏感,使得可以区分一些基本的岩石类型。Landsat 8于2013年2月11日发射,携带两个传感器,包括OLI和热红外传感器(TIRS)。它提供11个光谱波段的图像,与ETM+在VNIR和SWIR波段1-7和全色波段8的分辨率相同。用于卷云检测的波段9的空间分辨率为30 m。最后两个热波段10和11的分辨率为100 m。OLI波段的光谱范围旨在防止ETM+波段内的大气吸收特性(Zhang等人,2016)。在ETM+传感器的波段4(0.780–0.900 μm)中,水蒸气吸收特性存在于0.825 μm,并且通过添加波段4(0.630–0.680 μm)和波段5(0.850–0.880 μm)在OLI中消除(Zhang等人,2016)。ASTER是地球观测系统(EOS)Terra平台的一部分,跟踪太阳辐射在14个光谱波段。ASTER测量在0.52到0.86 μm(VNIR)和六个波段在1.6到2.43 μm(SWIR)的反射辐射,分辨率分别为15和30 m。ASTER在热红外(TIR)范围内有五个波段,波长范围为8.125到11.65 μm。ASTER的每个场景覆盖60×60 km的面积(Rowan和Mars,2003)。欧洲航天局一直在开发一个新的任务系列,称为Sentinel,特别是为了哥白尼计划的操作需求。每个Sentinel任务都基于两个卫星的星座,以满足重访和覆盖要求,为哥白尼服务提供强大的数据集。这些任务携带了一系列技术,如雷达和多光谱成像仪器,用于陆地、海洋和大气监测。Sentinel-2是一个极地轨道、多光谱高分辨率成像任务,用于陆地监测。Sentinel-2A于2015年6月23日发射,Sentinel-2B于2017年3月7日跟进。它们提供的图像可以用于探测地球上的矿物发生,并由13个VNIR和SWIR光谱波段组成,空间分辨率为四个波段10 m,六个波段20 m,三个波段60 m(Drusch等人,2012)。高分辨率图像通常必须从商业供应商如DigitalGlobe(Maxar Technologies)1、Planet Labs或Planet 2和Spot Image(Airbus Defence and Space)购买。DigitalGlobe是一家美国商业卫星图像和地理空间内容供应商,以及民用遥感卫星的运营商,如IKONOS、QuickBird、GeoEye-1和WorldView卫星系统,这些是由Ball Aerospace and Technologies设计的商业和轨道平台网络(Good等人,2018)。2007年,WorldView-1(WV-1)发射,具有50厘米(cm)空间分辨率的全色(PAN)成像系统。没有搭载多光谱波段的单波段PAN系统的主要目标是快速收集高空间分辨率图像,最适合于生成详细的数字高程模型(DEM)数据。下一个重大突破是2009年发射的WorldView-2(WV-2),它提供了46 cm像素大小的高分辨率PAN数据加上1.85 m空间分辨率的VNIR波段。WV-2是第一个收集从0.4到1.04 μm波长的八个高分辨率多光谱波段的仪器(Kruse和Perry,2013)。目前在太空中唯一的16波段商业高分辨率地球成像卫星是2014年8月发射的WorldView-3(WV-3)。WV-3具有在1.2到2.33 μm的八个SWIR(1.2–2.33 μm)波段的增强能力,空间分辨率为3.7 m,以及八个VNIR(0.42–1.04 μm)波段,空间分辨率为1.2 m(Kruse等人,2015)。Planet是一家美国私营地球成像公司,拥有三个不同的卫星星座,包括Doves、SkySats和RapidEye。其中,RapidEye数据,结合其他类型的卫星数据,已被用于测绘地质特征,如伟晶岩矿床(Peng和Gao,2013)。Spot Image总部位于法国,主要以SPOT(Satellite Pour l’Observation de la Terre)地球观测卫星的商业运营商而闻名。该公司还分发来自其他光学和雷达卫星的多分辨率数据,如非常高分辨率的Pleiades卫星。SPOT是一个商业高分辨率光学地球成像卫星系统,从太空运行。它的设计是为了通过探索地球资源、探测和预测涉及气候学和海洋学的现象,以及监测人类活动和自然现象,来提高对地球的知识和管理工作。SPOT系统包括一系列卫星(SPOT 1-7)和地面控制资源,用于卫星控制和编程、图像生产和分发。在不同的SPOT卫星中,SPOT 5和其他多光谱数据的组合已被广泛用于测绘地质特征(Harbi和Madani,2014;Ahmadirouhani等人,2018;Bishta,2018;Bishta和Sonbul,2021)。Google Earth使得可以免费查看、映射和导航地球上任何偏远位置(Bailey等人,2012;Fisher等人,2012),被认为是地球科学中最高效的工具之一。Google Earth包括从不同的Landsat图像获得的广泛真彩色可见光谱卫星图像和来自商业供应商的高分辨率数据(Tewksbury等人,2012;Fisher等人,2012)。它对于在实地规划和侦察调查中识别主要露头位置非常有用,并将偏远地区与通过实地数据确认的露头连接起来。此外,它在偏远和战争或政治动荡地区是一个有益的工具。Hyperion传感器的发明标志着高光谱遥感的开始。Hyperion是第一个星载高光谱传感器,能够提供VNIR和SWIR光谱的数据,于2000年11月作为美国宇航局EO-1千年任务的一部分发射(Pearlman等人,2003)。它包括VNIR和SWIR区域的0.36–2.58 μm光谱,有242个光谱波段,大约10纳米(nm)的光谱分辨率和30 m的空间分辨率(Pearlman等人,2003)。

3.1.2.

雷达数据 加拿大政府批准了一个名为RADARSAT(1980)的地球观测计划。自RADARSAT-1(1995)发射和RADARSAT-2(2007)发布以来,加拿大一直在不间断地提供C波段合成孔径雷达(SAR)数据。随着下一代任务的RADARSAT星座计划的最新规划,也有一个坚定的承诺,确保未来的数据可靠性。这种常年的数据供应允许用户将这一重要的知识库纳入其在国家和国际层面的操作应用中(Iris等人,2019)。Sentinel-1是一个极地轨道、全天候、昼夜雷达成像任务,用于陆地和海洋服务。Sentinel-1A于2014年4月3日发射,Sentinel-1B于2016年4月25日发射。Sentinel-1 C波段SAR传感器具有双极化(共极化VV或HH,和交叉极化VH或HV),宽幅干涉模式,空间分辨率为5×20 m(Zoheir等人,2019)。微波的SAR数据是用于测绘地质结构的专业数据的极好组成部分。相控阵型L波段合成孔径雷达(PALSAR)传感器是一个完全极化(HH、HV、VH和VV)的L波段SAR传感器,具有多观测模式(精细、极化和ScanSar),空间分辨率分别为10、30和100 m(Ma等人,2017)。

3.2. 航空数据

如今,航空数据是通过飞机和无人机收集的,并且为它们开发了特定的传感器。自1997年以来,Geoscan AMSS MKI和MKII传感器提供了多光谱和高光谱航空数据(Agar,1994)。先进可见红外成像光谱仪-新一代(AVIRIS-NG)的设计是基于AVIRIS的一些修改和改进。AVIRIS通过扫描机制测量太阳辐射,具有10 nm的光谱分辨率和224个波段,横跨轨道组件。AVIRIS-NG数据具有高信噪比,并且没有微笑/尖峰和键石错误。AVIRIS-NG是一种高光谱成像光谱仪,空间分辨率为8.1 m,有427个连续的5 nm波段,从0.38到2.51 μm(Hamlin等人,2011)。1999年10月,高光谱测绘仪(HyMap)在澳大利亚开发和运行。这个传感器覆盖了0.45到2.48 μm的波长,由126个光谱波段组成,并提供了2到10 m的空间分辨率。除了由于大气水汽在1.4和1.9 μm附近的吸收水平外,HyMap可以实现连续的连续体(Ishidoshiro等人,2016)。已经审查了包括Geoscan AMSS MKI、GER DAIS 63、AVIRIS、De Beers AMS、TEEMS、HyMap、CASI、SFSI和SpecTir在内的航空传感器,详细说明了它们的光谱和空间特征(Agar和Coulter,2007)。无人机(UAS)被称为无人驾驶航空器(UAV)、空中机器人或简称无人机,最常见的词汇是UAV和无人机(Colomina和Molina,2014)。无人机在矿产勘探中逐渐被使用。无人机可以从安全距离快速测绘崎岖地形或步行或汽车难以到达的露头,确保现场有限的人力资源保护、速度和质量。使用基于无人机的高光谱图像进行地质勘探测绘的重要性在有限的研究中已经显示(例如,Booysen等人,2020)。在Marinkas Quellen、纳米比亚和Siilinj¨arvi、芬兰,已经应用了无人机上的高光谱传感器直接测绘稀土元素(Booysen等人,2020)。Colomina和Molina(2014)描述了一些常见和代表性传感器的基本特征,包括可见带、近红外(NIR)、热、多光谱和高光谱摄像机、激光扫描仪和合成孔径雷达,用于无人机。Heincke等人(2019)为地质测绘和矿产勘探开发了多传感器无人机,配备了一种新的集成定位系统,不依赖全球定位系统(GPS)。这允许在GPS接收低的区域,如矿井隧道和狭窄山谷,进行精确定位。

3.3. 地面数据

地面高光谱感测,特别是在VNIR和SWIR部分的电磁谱,对于地质目的越来越受欢迎。已经实现了具有更高光谱和空间分辨率的远程测量,尽管对于快速表征岩石、矿物和土壤的高光谱分辨率(10 nm)的近接感测是普遍的(Salazar和Coffman,2020)。由特殊摄像机捕获的高光谱图像可以用于测绘蚀变矿物。在Gongchangling铁矿,已经检查和分析了一个典型的高品位铁矿体的剖面(Song等人,2020)。使用偏振显微镜检查材料,并根据热液矿物组合和成矿作用确定变化的分带。此外,Norsk Elektro Optikk(NEO)HySpex成像系统被用来产生每个蚀变区墙岩的高光谱图像。他们的发现表明,光谱特征显示出明显的规律变化;例如,随着高品位铁矿体从近端到远端的移动,绿泥石和石榴石的波长占主导地位的热液蚀变矿物增加,吸收深度缩小。高光谱扫描仪可以安装在平台上,例如,地面以上约4 m(Krupnik等人,2016)。例如,HySpex可以用于扫描现场场景,可以轻松地放在三脚架和旋转台上。这个相机使用二维CCD传感器阵列;第一个维度用于光谱分离,而第二个用于单空间方向成像。传感器的运动覆盖了第二个空间维度。相机在每个轨道上捕获1600像素,导致小于1毫米的空间分辨率。旋转台的速度可以调整,使得相机捕获的单线创建一个几乎正方形像素的图片。可以在410到990 nm的光谱范围内记录160个波段,通过在光谱方向上对320个传感器像素进行分组,具有3.7 nm的光谱采样间隔。数据可以以12位的辐射分辨率捕获(Buddenbaum等人,2012)。高光谱快照相机方法使得快速图片数据捕获以便携方式成为可能。UHD 285高光谱快照相机是一种非扫描高光谱相机,主要用于实时数据捕获。在常规太阳光环境中,全帧照片以14位的动态图像分辨率捕获在硅CCD芯片上,传感器分辨率为970×970像素,在450到950 nm区域。在正常太阳光环境中捕获一个高光谱数据立方体的积分时间是1毫秒(ms)。相机可以每秒捕获超过15个光谱数据立方体,使得高光谱视频录制成为可能(Jung等人,2015)。

4. 目标特征

在应用图像处理技术于矿产勘探的第一项研究中,Sabins(1999)提出了两个关键方法来定位矿床。第一是岩性和结构测绘,第二是测绘热液蚀变带。后来,Rajesh(2004)提出了三种方法:(i)岩性;(ii)结构;和(iii)蚀变测绘。识别矿化区域作为第四种方法对于向不同矿床定位也很重要(van der Meer等人,2012)。自20世纪70年代以来,图像处理算法已经被实施用于探测不同类型矿床,特别是斑岩铜和金矿床。图2展示了与斑岩铜系统中的蚀变和矿化带相关的示意图。此外,它们已被用于探索铁矿石、火山成因块状硫化物(VMS)、矽卡岩型、铬铁矿、稀土元素(REE)、卤水和蒸发岩、斑岩钼、锌和铅、钻石和铝土矿矿床(Cardoso-Fernandes等人,2020a)。接下来,我们讨论矿产勘探中最重要的目标特征。

4.1. 岩性

矿床是包含所需元素的适当量和数量的岩石体积,可以经济地开发。任何矿热液输送系统都包括大量的岩石(或岩浆),通过这些岩石释放矿化元素。例如,VMS矿床是与海底岩浆岩相关的高品位金属积累(Heinrich和Candela,2014)。沉积岩中的矿床是铅和锌的主要资源,它们要么是密西西比河谷类型,要么是层状碎屑沉积物宿主矿床。这些矿床由各种矿物组成,由广泛的碳酸盐岩和硅质岩岩组成(Leach等人,2005)。Cu、Mo、Sn、W、In和Re的主要资源和Au、Ag、Pb、Zn和其他次要和稀有金属的重要来源与侵入岩岩浆-热液矿床系统相关。斑岩和热液Cu、Mo和Au矿床是这些矿床的一些例子(Richards,2011)。因此,区分和识别不同的岩石单元是矿产勘探过程中不可分割和基本的部分,遥感数据可以提供提取关键地质特征。几种图像处理算法已经在绘制不足或未绘制的地区进行了检查,以表示和优化不同光谱岩性划分的区别,以利用各种类型的卫星数据区分岩性单元(Beiranvand Pour等人,2019a)。降维技术,如主成分分析(PCA)、独立成分分析(ICA)和最小噪声分数(MNF),已经被应用于OLI和ASTER光谱波段,以测绘岩性单元(Beiranvand Pour等人,2019a;Ali和Beiranvand Pour,2014)。分类方法,如光谱角映射仪(SAM)和最大似然估计(MLE),也已经应用于Hyperion、ALI和ASTER数据,用于测绘不同的岩性单元(Beiranvand Pour和Hashim,2014)。Amer等人(2010)使用PCA获得的图像以及新发展的ASTER波段比率来制作埃及中东部沙漠的岩性图。在这项研究中,不同的蛇纹岩岩石,包括蛇纹岩、变质辉长岩、变质玄武岩和花岗岩岩石,如灰色和粉红色花岗岩,被区分开来,用于指向铬铁矿矿床。Yu等人(2012)使用ASTER图像以及ASTER衍生的DEM和航空磁数据,应用支持向量机(SVM)方法,对印度西北部的研究区域进行自动化岩性分类。在这项研究中,SVM与最大似然分类器(MLC)进行了比较。结果表明,SVM在独立验证样本的分类精度更高,与现有的岩性地层数据库相似。近年来,像WV-3这样的现代传感器提供了高分辨率图像,已经被评估用于岩性测绘,并且结果已经与ASTER和OLI数据进行了比较,以满足大规模地质测绘的标准(Ye等人,2017)。

4.2. 蚀变类型

矿床区域的围岩地球化学性质引起蚀变,最终形成各种矿床类型和金属,如斑岩铜和热液金系统(Sillitoe,2010)。斑岩矿床的特征是大量(10–>100 km3)的热液蚀变岩,聚集在斑岩股票上,也可能包括矽卡岩、碳酸盐岩替代、沉积物宿主和热液类型的贵金属矿化。粘土质、绢云母、丙型和高级粘土蚀变模式是一些重要的指示器,用于指向斑岩和热液矿床(Testa等人,2018)。在沉积物宿主矿床的情况下,碳酸盐宿主岩石的溶解和热液角砾岩化通常与流体混合相关的酸产生反应有关,这是MVT矿床中最常见的蚀变。与SEDEX矿床相关的蚀变和晕生产风格依赖于宿主沉积结构和渗透性加上孔隙度特征。由于SEDEX系统中的蚀变幅度通常远低于VMS系统,因此在有利地层中的晕的尺度可以大得多。铁-锰碳酸盐和硅酸盐蚀变是可以映射的两种主要蚀变类型,通过详细分析目标矿床(Leach等人,2005)。因此,区分蚀变和未蚀变岩石以及识别蚀变模式对于勾画矿化有利区域至关重要;因此,遥感数据分析是一个有效的工具。区分蚀变和未蚀变区域的能力对于不同目的的地质测绘至关重要,例如矿产勘探。由于各种矿物组合,每种蚀变类型都表示一个特定的光谱模式。地质学家使用这些光谱特征作为诊断特征,以识别和区分使用遥感数据的各种蚀变类型。多光谱和高光谱遥感仪器提供了详细的光谱数据,用于地球岩石圈的地球化学。这项技术已经使用了几十年来测绘不同地区的风化特征,例如van der Meer等人(2012);Beiranvand Pour等人(2019a,b);Bolouki等人(2020)。PCA(Ghulam等人,2010)、SAM(Ferrier等人,2002)、光谱信息发散(SID)(Sheikhrahimi等人,2019)和选择性降维技术的集成(Shirmard等人,2020)是一些已经应用于遥感数据以测绘热液蚀变带的方法。不同的蚀变类型,如丙型、绢云母、粘土质和高级粘土质,已经通过应用选择性PCA在ASTER数据上(Noori等人,2019)等方法被区分。此外,具有5 nm光谱分辨率的AVIRIS-NG高光谱数据允许识别各种改变的和风化的粘土群在目标区域(Tripathi等人,2020)。

4.3. 结构

几种类型的矿床,如热液、中温热液、卡林型金和其他热液矿床,通常与断层、脉和剪切带系统相关。这些结构特征可以有用,以促进与结构控制矿物相关的区域的未来勘探工作(Grebby等人,2012)。应用于矿产勘探的结构分析旨在识别变形如何影响岩石的渗透性,无论是空间上还是随时间(Micklethwaite等人,2010)。使用卫星数据提取构造线理是遥感数据分析的基本应用。对于许多应用来说,测绘构造线理,如断层和岩脉,非常重要,主要是因为它们与热液矿化的关系(Farahbakhsh等人,2020a)。遥感技术的最新进展改善了光学和雷达遥感数据在调查地质结构,如构造线理方面的应用,这些线理涉及在覆盖和未覆盖区域的直线和曲线结构。结构线理解释有助于理解一个区域的构造和地质动力学过程(Chinkaka,2019)。已经使用了各种算法和遥感数据格式来测绘地质结构。例如,空间卷积滤波技术已被广泛用于处理PALSAR数据(Beiranvand Pour等人,2016)。通过在SRTM、OLI和ASTER数据上应用边缘检测方法,自动提取了线理(Hamimi等人,2020)。各种方法,如光谱波段比率指数、监督分类技术,即SAM、SID、方向滤波技术,以及手动提取构造线理,已经被应用于ASTER、SAR/RADARSAT-1、ASAR/ENVISAT、SPOT 5和SPOT 7数据,用于测绘地质结构(Beiranvand Pour等人,2018;Sheikhrahimi等人,2019;Tagnon等人,2020;Ibrahim等人,2017)。图像处理方法可以应用于雷达遥感数据,以评估分散金异常的区域构造控制(Zoheir等人,2019)。SAR数据在遥感数据处理的帮助下,为埃及东南部沙漠提供了生动的岩石构造洞察(Zoheir等人,2019)。

4.4. 矿物

区分独特的矿物作为高经济潜力区域的指示器至关重要。使用遥感数据识别矿化区域已经在全球范围内广泛用于定位斑岩铜、热液金和VMS矿床(Bolouki等人,2020)。随着高光谱遥感数据的出现,定量和验证的(亚像素)表面矿物学测绘已经开始(Rajan Girija和Mayappan,2019)。这导致了各种技术的出现,用于将图像像素光谱与库和现场光谱匹配,并解决混合像素光谱以纯末端成员光谱,以提取亚像素表面的组成细节(van der Meer等人,2012)。例如,矿物的足迹,如粘土矿物(例如高岭石和伊利石)、硫酸盐矿物(例如明矾石)、碳酸盐矿物(例如方解石和白云石)、铁氧化物(例如赤铁矿和针铁矿)和二氧化硅(石英)使得能够测绘蚀变相(丙型、粘土质等),这些是指向热液和斑岩相关矿床的关键指示器(Testa等人,2018;Rajan Girija和Mayappan,2019;van der Meer等人,2012)。超镁铁质火成岩可以分为氧化物矿物宿主金属的岩石和金属作为硫化物维持或与硫化物密切相关的岩石。层状、豆状和角砾岩相关的铬铁矿、含钛和钒的磁铁矿富层、富钛和钒的钛铁矿层或不协调体是氧化矿床中发现的。大块、网状和分散的Ni-Cu-PGE(铂族元素)出现,以及含有分散硫化物的PGE富集礁有矿石(Ripley和Li,2018)。因此,遥感数据可以广泛有效地用于测绘这些矿物(Awad等人,2018)。已经使用了许多方法从遥感数据中提取指示矿物。PCA和ICA是图像处理中常用的两种图像处理算法,在矿物测绘中(Cardoso-Fernandes等人,2020a;Farahbakhsh等人,2016)。在ASTER的短波红外波段上实施了几项光谱分析,用于检测归因于不同尺度上的蚀变矿物组合的光谱特征(Beiranvand Pour等人,2019a)。ASTER、ALI和Hyperion是一些最常用的遥感数据,用于测绘矿物(Beiranvand Pour和Hashim,2014)。Kruse和Perry(2013)通过应用最小距离分类,从AVIRIS、ASTER和World View-3数据中提取了作为感兴趣区域的矿物。在这项研究中,方解石、芽孢石、明矾石、高岭石、云母和二氧化硅可以被提及为一些被提取和映射的矿物。此外,图像处理方法已经应用于轻型无人机基础的高光谱数据,直接测绘了纳米比亚Marinkas Quellen和芬兰Siilinj¨arvi的稀土元素(Booysen等人,2020)。

5. 机器学习

测绘地质特征是矿产勘探的一个基本步骤。机器学习方法和遥感数据的结合使用可以被认为是一个简单且经济的方法,用于测绘与矿床相关的岩性单元、蚀变带、结构和指示矿物。在几个领域,获取高分辨率遥感数据的快速发展导致了大数据的爆炸,为数据驱动的发现提供了新的机会(Sun和Scanlon,2019)。机器学习方法在分析遥感数据方面是有效的,因为它们可以自动学习输入特征(如反射率连续
体)与期望输出之间的关系,以进行预测或分类。此外,它们在光谱和地面真实测量中对噪声和不确定性具有很强的鲁棒性(Gewali等人,2018)。总的来说,机器学习方法有两种主要类型,包括监督学习和无监督学习。监督机器学习方法需要标记数据,这些数据用于回归和分类问题,以模拟输入特征和结果之间的关系(Kotsiantis,2007)。基于机器学习的分类方法为不同的数据集(问题)提供不同的结果,即各种分类地图。提供解决一个问题的最佳准确性的机器学习方法可能不适用于另一个问题或数据集。因此,在解决问题之前,必须检查给定数据集的各种方法(Çigsar和Ünal,2019)。无监督学习方法有能力在不需要目标标签的情况下识别数据中的模式。无监督学习的示例包括聚类和数据简化策略,如PCA。聚类方法使用给定的数据实例之间的相似性度量来发现数据中的结构,并开发聚类(组)。聚类方法通常用于机器学习和图像处理(Xie等人,2020)。降低特征集的维度在机器学习中很重要,以便减少问题的复杂性,去除异常值和噪声,并最终缩短模型训练时间。在较小的数据集中,简化的模型通常更健壮,并且受噪声或异常值变化的影响较小(Caggiano等人,2018)。深度学习是机器学习的一个分支,它通过应用具有复杂结构的多个处理层来模拟数据中的高层抽象。深度学习方法,如递归神经网络(RNN)、卷积神经网络(CNN)、自编码器、深度信念网络和受限玻尔兹曼机,已经成功地应用于转型不同的领域(Benuwa等人,2016;Schmidhuber,2015;Velliangiri等人,2019)。集成方法集成了多个机器学习模型用于分类或回归问题,通常优于独立方法(Sagi和Rokach,2018)。随机森林是基于决策树的集成方法的一个例子,它基于装袋范式,可以用于分类或回归问题(Rokach,2010)。将选定的机器学习方法整合到集成学习范式中,如提升、堆叠和装袋,一直很突出(Dietterich,2002;Guan等人,2014;Yang等人,2010)。机器学习方法本质上是数据驱动的方法,可以以多种方式使用,例如处理高维数据到较低维度,预测数据中的某些趋势,并识别数据中的某些特征或组成部分。因此,应用机器学习方法解决日益增长的遥感数据的规模和复杂性方面有很大的潜力和机会(Cracknell和Reading,2014)。机器学习和遥感数据的结合,包括卫星、航空和地面数据,可以在矿产勘探中有所帮助。接下来,我们回顾在处理遥感数据以进行矿产勘探方面最突出和最近使用的机器学习算法。在我们的研究中,机器学习方法被分类为降维、分类、聚类、回归和深度学习方法。表2提供了一个样本研究列表,这些研究专注于使用机器学习方法进行遥感数据分析,以测绘潜在的矿化区域。此外,使用遥感数据和机器学习方法的组合创建关键证据地图的工作流程在图3中呈现。

5.1. 降维技术

像PCA(Wold等人,1987)、ICA(Comon,1994)和MNF(Nielsen,2011)这样的降维技术是多变量统计方法,它们将一组相关的输入变量转换为不相关或独立的组成部分,并且已经被广泛用于处理遥感数据(Shirmard等人,2020)。Traore等人(2020)使用Landsat 8卫星图像进行岩性和蚀变测绘,通过应用PCA和MNF进行所有uvial金勘探。粘土和碳酸盐矿物、铁氧化物、铁硅酸盐和岩性单元在研究区域中被识别和映射。Abdolmaleki等人(2020)使用PCA对Sentinel-2数据进行分类和评估,以探索铁氧化物铜金(IOCG)矿化。Takodjou Wambo等人(2020)在区域尺度上应用PCA和ICA,使用OLI数据提取与植被、铁氧化物/氢氧化物矿物、Al-OH和Fe-Mg-OH矿物、碳酸盐群和硅化相关的光谱细节。Sekandari等人(2020)采用并实施了PCA,使用不同的遥感数据在伊朗克尔曼省勘探Zn-Pb矿化,包括Landsat 8、Sentinel-2、ASTER和WV-3。
Sheikhrahimi等人(2019)使用ASTER数据和PCA映射热液蚀变矿物,并更好地区分与伊朗Sanandaj Sirjan带或ogenic金矿床相关的结构特征。在该区域,PCA被用于图像转换,以勾画岩性单元和蚀变矿物,提供了一种快速和成本效益高的手段,以启动一个全面的地质勘探计划。丙型、绢云母、粘土质和高级粘土质蚀变和硅化带通常与伊朗Torood–Chahshirin岩浆带中的Au-Cu、Ag和/或Pb-Zn矿化相关。Noori等人(2019)实施了选择性PCA和相关方法,以映射热液蚀变带。此外,进行了全面的实地工作和实验室研究,使用X射线衍射(XRD)、岩石学。

在这里插入图片描述

5.2 分类

我们讨论了一些关键方法,这些方法在我们考虑遥感矿物勘探的范围内用于分类问题。尽管一些方法(如神经网络和随机森林)也可以用于回归和预测,但我们的重点是分类。

5.2.1 最小距离分类

最小距离(MD)分类器是一种监督学习方法,它利用多维空间中每个类别的均值向量,并测量每个类别从每个图像像素向量到均值向量的欧几里得距离(Richards和Jia,2006)。MD在遥感数据分析中并未广泛使用,特别是在矿产勘探中。Kruse和Perry(2013)定义了提取用于矿物制图的感兴趣区域的内成员光谱,然后对具有7.5米空间分辨率的86波段AVIRIS SWIR数据和模拟的WV-3 SWIR数据应用了最小距离分类。在最近使用Hyperion、ASTER和OLI数据的研究中,通过包括MD、SAM、SID和支持向量机(SVM)在内的四个监督分类器对来自印度西部拉贾斯坦邦乌代布尔地区的岩性单元进行了绘制(Pal等人,2020年)。Gemusse等人(2019年)在一项旨在提供土地利用分类图并评估其准确性的研究中使用了Sentinel-2、ASTER和OLI数据。在另一项研究中,使用了MD和SAM等方法来定位伟晶岩(Gemusse等人,2019年)。通常由于其灵活性和效率而应用MD分类器;然而,它的缺点是分类精度较差。在最近的研究中,基于相对偏移加权的MD分类器提高了精度(Wang和Jiang,2019年)。

5.2.2 支持向量机

支持向量机(SVM)是一种用于分类和回归问题的监督机器学习方法,多年来已被证明是健壮和有效的(Cortes和Vapnik,1995)。SVM将数据集投影到另一个特征空间中,其中维度小于输入空间,这使得分类过程更加简单(Tahmasebi等人,2020)。SVM在矿产勘探中,特别是在处理遥感数据方面,已经显示出其应用的显著性,以下是一些关键的发展。

Othman和Gloaguen(2014)展示了SVM在通过分类东北伊拉克Mawat橄榄岩杂岩的岩性单元来定位铬铁矿床的能力,他们使用了ASTER数据。在这项研究中,多种类型的地表反射率、感测器温度、纹理和地形参数被联合处理,以创建具有最大精度的图层。研究结果导致了一个新的铬铁矿床的发现,面积超过0.3平方公里。收集的样本显示,铬铁矿在橄榄岩基岩中粗晶。Xu等人(2019)表明,使用遥感数据和SVM绘制蚀变带对于金矿床的成矿预测是重要的。在这项研究中,遥感数据被用来圈定有利的成矿区域并发现新的金矿点。研究表明,蚀变图非常可靠,可以在发现金属矿物中发挥关键作用。金矿床的有利区域可以根据蚀变带和现场检查的发现来描绘。在岩石和矿物的分类和详细提取中,Wang和Zheng(2010)使用了SVM分类器,通过处理中国云南省西北部Beiya研究区的两个Hyperion图像来进行蚀变映射。结果表明,使用Hyperion数据可以可靠地描绘出蚀变带。从Hyperion数据中获得的矿物学和岩性知识与地质图和先前研究中的金矿床发现相当一致。Abdolmaleki等人(2020)在一项研究中应用了SVM,通过结合遥感、地质、地球物理和地球化学数据,创建了矿物潜力图。IOCG矿化潜力图表明,它与先前的地质实地研究很好地对齐。Gasmi等人(2016)使用了ASTER数据的VNIR和SWIR光谱带、PCA、假彩色复合图像和SVM来区分岩性单元。结果与实地调查和已发布的地质图一致。

Cardoso-Fernandes等人(2020b)提出了一种基于SVM半自动化的方法来绘制含锂伟晶岩,并检测到了已知的Li-伟晶岩单元以及其他Li勘探目标区域。研究还发现,类别不平衡对SVM精度产生了负面影响,因为已知的Li-伟晶岩没有被检测到。最近,从勘探到修复的采矿中,使用无人机获得的遥感数据的SVM应用被回顾(Park和Choi,2020)。在一项创新研究中,Lorenz等人(2021)实现了SVM分类方法,使用无人机获得的数据来绘制矿化带。

5.2.3 人工神经网络

人工神经网络,也称为神经网络,是受生物神经系统启发的机器学习方法(Rumelhart等,1986;LeCun等,1988;Hornik等,1989)。神经网络方法在遥感数据分析中的迅速采用主要是由于它们能够学习复杂模式,并考虑到解释变量和依赖变量之间的非线性和复杂关系(Lek和Guegan,1999)。简单的神经网络,也称为多层感知器,已应用于分析遥感数据,并取得了有希望的结果,以下是一些关键研究。

Rigol-Sanchez等人(2003)使用简单的神经网络模型,利用遥感数据和已知的矿点来识别具有高矿化潜力的区域,在西班牙东南部的Rodalquilar金矿区。有效地提供了一个金矿化潜力图,表明历史上已识别的和未知的潜在矿化区域都可以被识别。这些初步发现表明,神经网络可以被认为是矿产勘探中稳健的空间数据建模方法。

Leverington(2010)检查了Landsat 5和Hyperion数据在区分一个区域的岩石学分组中的效率,并试图展示宽带和高光谱数据集的有用性。在这项研究中,TM数据被使用神经网络算法进行分类,然后TM和Hyperion数据都被线性分解使用地面真实光谱。Wang等人(2010)应用概率神经网络整合由地质信息(地质、地球物理、地球化学和遥感)引起的多矿物异常,并提供了中国河南省栾川县钼和多金属Pb-Zn-Ag矿化1:25000潜力图。神经网络是映射线状特征的有效工具,这些特征为矿产勘探提供了关键特征。Borisova等人(2014)比较了使用神经网络映射线状特征的结果与从卫星图像和地质图的视觉分析获得的结果。在神经网络领域,特别是深度学习的最新贡献,集中在大型和复杂的神经网络架构上,用于多媒体和大数据相关问题(Schmidhuber,2015)。在神经网络领域,尤其是在深度学习方面,有一系列新兴的研究主题,稍后将进行综述(第5.5节)。

5.2.4 随机森林

决策树是通过构建一个倒置的树,其中包含根节点、内部节点和叶节点,来解决分类和回归问题的常用机器学习方法(Quinlan,1986)。该算法是非参数的,并且可以有效地处理大型、复杂的数据集,而不强加复杂的参数结构(Song和Ying,2015;Quinlan,1987)。决策树的主要问题是在训练数据集上过拟合,并且它们无法泛化到复杂的数据集上(Utgoff,1989)。随机森林是一种基于集成学习方法bagging的集成机器学习方法,它创建了一个由基于决策树的分类器组成的集成,解决了决策树的局限性(Breiman,1996)。随机森林集成由几棵树系统地构建,这些树是从训练数据的任意选择的子组中独立构建的(Ho,1998;Belgiu和Dragut,2016)。值得注意的是,最终决策是使用集成中的所有树(森林)来做出的。在分类问题中,使用集成中的树的投票程序来做出决策。在回归任务中,使用来自集成的个别树的平均预测来做决策。

Chung等人(2020)应用随机森林来最小化模型构建中的变量数量,挑选最佳的代表性波段,使用高光谱遥感数据对镁矿石和与矿石相关的矿物,包括白云石、方解石和滑石进行分类。Cardoso-Fernandes等人(2019)在应用中使用了随机森林和SVMs来绘制相同级别的1-C Sentinel-2图像,这些图像是在2017年10月获取的。使用这两种方法绘制的露头正确识别了三个露天矿中的含锂伟晶岩。

Kuhn等人(2018)使用随机森林分类器来表征一个与历史上重要的金矿相邻的大部分未勘探区域的岩石学,使用结合了地球物理和遥感数据的方法。鉴于数据有限,作者发现随机森林可以是地质科学家在造山型金矿化的绿地或ogenic gold mineralization的一个重要附加工具。在另一项研究中(Cracknell和Reading,2014),比较了五种机器学习算法(朴素贝叶斯、K最近邻、随机森林、SVM和简单的神经网络)在提取不同岩石单元方面的效率,他们使用了Landsat 7和空间控制的遥感地球物理数据。Wang等人(2020b)整合了多源和多传感器遥感数据,并应用随机森林来区分关键岩石单元,通过探索稀土元素促进计算效率和分类精度。随机森林在遥感数据分析中有许多应用,在提取对矿产勘探至关重要的目标特征方面。Cracknell和Reading(2013)比较了随机森林和SVMs,用于从结合的航空地球物理和多光谱卫星数据中推断岩石学的时空分布,在动态的、褶皱的和高级别的变质岩地层中。Bachri等人(2020)结合了Sentinel-2和PALSAR的光谱、纹理和地形信息,并使用随机森林绘制了岩石学特征。在具有陡峭地形、密集植被和有限露头的区域进行矿产勘探和地质制图是具有挑战性的。SAR可能穿透植被冠层,协助在这些环境中进行地质制图。Radford等人(2018)应用随机森林对使用航空极化地形观测通过渐进扫描(TOPSAR)和地球物理数据的岩石单元进行分类。在另一项研究中,Belgiu和Dragut(2016)回顾了随机森林在遥感数据分析中的应用。

5.2.3 人工神经网络

人工神经网络,也称为神经网络,是受生物神经系统启发的机器学习方法(Rumelhart等,1986;LeCun等,1988;Hornik等,1989)。神经网络方法在遥感数据分析中的迅速采用主要是由于它们能够学习复杂模式,并考虑到解释变量和依赖变量之间的非线性和复杂关系(Lek和Guegan,1999)。简单的神经网络,也称为多层感知器,已应用于分析遥感数据,并取得了有希望的结果,以下是一些关键研究。

Rigol-Sanchez等人(2003)使用简单的神经网络模型,利用遥感数据和已知的矿点来识别具有高矿化潜力的区域,在西班牙东南部的Rodalquilar金矿区。有效地提供了一个金矿化潜力图,表明历史上已识别的和未知的潜在矿化区域都可以被识别。这些初步发现表明,神经网络可以被认为是矿产勘探中稳健的空间数据建模方法。

Leverington(2010)检查了Landsat 5和Hyperion数据在区分一个区域的岩石学分组中的效率,并试图展示宽带和高光谱数据集的有用性。在这项研究中,TM数据被使用神经网络算法进行分类,然后TM和Hyperion数据都被线性分解使用地面真实光谱。Wang等人(2010)应用概率神经网络整合由地质信息(地质、地球物理、地球化学和遥感)引起的多矿物异常,并提供了中国河南省栾川县钼和多金属Pb-Zn-Ag矿化1:25000潜力图。神经网络是映射线状特征的有效工具,这些特征为矿产勘探提供了关键特征。Borisova等人(2014)比较了使用神经网络映射线状特征的结果与从卫星图像和地质图的视觉分析获得的结果。在神经网络领域,特别是深度学习的最新贡献,集中在大型和复杂的神经网络架构上,用于多媒体和大数据相关问题(Schmidhuber,2015)。在神经网络领域,尤其是在深度学习方面,有一系列新兴的研究主题,稍后将进行综述(第5.5节)。

5.2.4 随机森林

决策树是通过构建一个倒置的树,其中包含根节点、内部节点和叶节点,来解决分类和回归问题的常用机器学习方法(Quinlan,1986)。该算法是非参数的,并且可以有效地处理大型、复杂的数据集,而不强加复杂的参数结构(Song和Ying,2015;Quinlan,1987)。决策树的主要问题是在训练数据集上过拟合,并且它们无法泛化到复杂的数据集上(Utgoff,1989)。随机森林是一种基于集成学习方法bagging的集成机器学习方法,它创建了一个由基于决策树的分类器组成的集成,解决了决策树的局限性(Breiman,1996)。随机森林集成由几棵树系统地构建,这些树是从训练数据的任意选择的子组中独立构建的(Ho,1998;Belgiu和Dragut,2016)。值得注意的是,最终决策是使用集成中的所有树(森林)来做出的。在分类问题中,使用集成中的树的投票程序来做出决策。在回归任务中,使用来自集成的个别树的平均预测来做决策。

Chung等人(2020)应用随机森林来最小化模型构建中的变量数量,挑选最佳的代表性波段,使用高光谱遥感数据对镁矿石和与矿石相关的矿物,包括白云石、方解石和滑石进行分类。Cardoso-Fernandes等人(2019)在应用中使用了随机森林和SVMs来绘制相同级别的1-C Sentinel-2图像,这些图像是在2017年10月获取的。使用这两种方法绘制的露头正确识别了三个露天矿中的含锂伟晶岩。

Kuhn等人(2018)使用随机森林分类器来表征一个与历史上重要的金矿相邻的大部分未勘探区域的岩石学,使用结合了地球物理和遥感数据的方法。鉴于数据有限,作者发现随机森林可以是地质科学家在造山型金矿化的绿地或ogenic gold mineralization的一个重要附加工具。在另一项研究中(Cracknell和Reading,2014),比较了五种机器学习算法(朴素贝叶斯、K最近邻、随机森林、SVM和简单的神经网络)在提取不同岩石单元方面的效率,他们使用了Landsat 7和空间控制的遥感地球物理数据。Wang等人(2020b)整合了多源和多传感器遥感数据,并应用随机森林来区分关键岩石单元,通过探索稀土元素促进计算效率和分类精度。随机森林在遥感数据分析中有许多应用,在提取对矿产勘探至关重要的目标特征方面。Cracknell和Reading(2013)比较了随机森林和SVMs,用于从结合的航空地球物理和多光谱卫星数据中推断岩石学的时空分布,在动态的、褶皱的和高级别的变质岩地层中。Bachri等人(2020)结合了Sentinel-2和PALSAR的光谱、纹理和地形信息,并使用随机森林绘制了岩石学特征。在具有陡峭地形、密集植被和有限露头的区域进行矿产勘探和地质制图是具有挑战性的。SAR可能穿透植被冠层,协助在这些环境中进行地质制图。Radford等人(2018)应用随机森林对使用航空极化地形观测通过渐进扫描(TOPSAR)和地球物理数据的岩石单元进行分类。在另一项研究中,Belgiu和Dragut(2016)回顾了随机森林在遥感数据分析中的应用。

6 讨论:挑战和未来展望

矿产勘探是发现经济上可生产的矿物数量的过程,它涉及一系列理想情况下导致可开采资源的事件链。寻找新矿床的勘探方法可能因矿床类型、研究区域的位置、基础设施的存在以及该地区现有地质知识的性质而有所不同。矿产勘探需要理论知道矿物为何以及如何存在于地壳的某个特定位置,以便提供勘探计划。矿产发现的目标是以最低的可能成本和最短的可能时间定位一个经济矿床。勘探的成功率和投资回报率很低,因为勘探是一个非常冒险的领域。近年来,由于矿产勘探发现成功率的下降和对关键金属需求的增加,地质学家被鼓励应用新的数据类型和方法来识别新的矿床。随着遥感数据、超级计算机和基于机器学习方法的建模的引入,尽管存在复杂性和挑战,但有更多的潜力发现新资源。目前,矿产发现领域的许多开创性活动依赖于三个领域:数字化和人工智能的使用、遥感和地球物理技术开发,以及通过覆盖层的新勘探方法(Gonzalez-Alvarez等,2020)。

7 结论

我们回顾了在遥感数据处理中实施和适应一些受欢迎和最近建立的机器学习方法,并调查了它们在探索不同矿床中的应用。遥感数据集提供了新的数据资源,以克服仅从实地数据绘制地质特征的问题。作为数据驱动的分类或预测工具,神经网络已在遥感数据处理以及从工程和环境科学到物理和天文学的广泛研究领域中得到广泛应用。降维技术可以将高维问题转化为低维空间,并从遥感数据中潜在地挖掘矿产勘探的特特征。深度学习方法的最新进展有可能处理大型和复杂的遥感数据,并在处理光谱和地面真实测量与噪声和不确定性方面具有特征。深度学习方法在识别目标特征和使用遥感数据进行矿产发现方面非常有效。先进的深度学习方法可以改善地质目标特征的制图,无论是小规模还是大规模研究,因为矿产勘探的成功率面临着对关键金属需求的增加。不同机器学习方法的限制和它们的具体要求是勘探地质学家面临的主要障碍。总之,使用先进的分析技术在矿产勘探中对于实现采矿业的可持续发展目标很重要。这些技术可以帮助地质科学家限制矿产勘探活动对生态、环境和气候的负面影响,提供高效和有效的成本削减解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值