参考文献列表
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
中文翻译:[1] 巴赫达努, D., 乔, K., & 本吉奥, Y. (2014). 通过联合学习对齐和翻译的神经机器翻译. arXiv预印本arXiv:1409.0473.
[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In CVPR, 2018.
中文翻译:[2] 蔡, Z., & 瓦斯孔塞洛斯, N. (2018). 级联R-CNN:深入高质量目标检测. 在CVPR.
[3] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. arXiv preprint arXiv:1904.11492, 2019.
中文翻译:[3] 曹, Y., 徐, J., 林, S., 魏, F., & 胡, H. (2019). GCNet:非局部网络与SE网络的结合及其扩展. arXiv预印本arXiv:1904.11492.
[4] João Carreira, Henrique Madeira, and João Gabriel Silva. Xception: A technique for the experimental evaluation of dependability in modern computers. Transactions on Software Engineering, 1998.
中文翻译:[4] 卡里埃拉, J., 马德拉, H., & 席尔瓦, J. G. (1998). Xception:现代计算机可靠性实验评估技术. 软件工程学报.
[5] Di Chen, Shanshan Zhang, Wanli Ouyang, Jian Yang, and Ying Tai. Person search via a mask-guided two-stream cnn model. arXiv preprint arXiv:1807.08107, 2018.
中文翻译:[5] 陈, D., 张, S., 欧阳, W., 杨, J., & 泰, Y. (2018). 基于掩码引导的双流CNN模型的人搜索. arXiv预印本arXiv:1807.08107.
[6] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. Mmdetection. https://github.com/open-mmlab/mmdetection, 2018.
中文翻译:[6] 陈, K., 庞, J., 王, J., 熊, Y., 李, X., 孙, S., 冯, W., 刘, Z., 施, J., 欧阳, W., 忠, C. C., & 林, D. (2018). MMDetection. https://github.com/open-mmlab/mmdetection.
[7] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
中文翻译:[7] 达拉尔, N., & 特里克斯, B. (2005). 基于方向梯度直方图的人体检测. 在CVPR.
[8] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip Torr. Res2net: A new multi-scale backbone architecture. arXiv preprint arXiv:1904.01169, 2019.
中文翻译:[8] 高, S.-H., 程, M.-M., 赵, K., 张, X.-Y., 杨, M.-H., & 托尔, P. (2019). Res2Net:一种新的多尺度骨干架构. arXiv预印本arXiv:1904.01169.
[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.
中文翻译:[9] 何, K., 格奥尔吉亚, G., 多拉尔, P., & 吉尔什克, R. (2017). Mask R-CNN. 在ICCV.
[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
中文翻译:[10] 何, K., 张, X., 任, S., & 孙, J. (2015). 深入研究整流器:在ImageNet分类上超越人类水平的表现. 在ICCV.
[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
中文翻译:[11] 何, K., 张, X., 任, S., & 孙, J. (2016). 深度残差学习用于图像识别. 在CVPR.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In ECCV, 2016.
中文翻译:[12] 何, K., 张, X., 任, S., & 孙, J. (2016). 深度残差网络中的恒等映射. 在ECCV.
[13] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. arXiv preprint arXiv:1905.02244, 2019.
中文翻译:[13] 霍华德, A., 桑德勒, M., 童, G., 陈, L.-C., 陈, B., 谭, M., 王, W., 朱, Y., 庞, R., 瓦苏德万, V., 等. (2019). 寻找MobileNetV3. arXiv预印本arXiv:1905.02244.
[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
中文翻译:[14] 霍华德, A. G., 朱, M., 陈, B., 卡连琴科, D., 王, W., 韦扬, T., 安德雷托, M., & 亚当, H. (2017). MobileNets:适用于移动视觉应用的高效卷积神经网络. arXiv预印本arXiv:1704.04861.
[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018.
中文翻译:[15] 胡, J., 沈, L., & 孙, G. (2018). 挤压与激励网络. 在CVPR.
[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In CVPR, 2017.
中文翻译:[16] 黄, G., 刘, Z., 范德马滕, L., & 温伯格, K. Q. (2017). 密集连接卷积网络. 在CVPR.
[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
中文翻译:[17] 约夫, S., & 谢盖迪, C. (2015). 批量归一化:通过减少内部协变量偏移加速深度网络训练. arXiv预印本arXiv:1502.03167.
[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In NeurIPs, 2012.
中文翻译:[18] 克里热夫斯基, A., 苏茨克弗, I., & 辛顿, G. E. (2012). 基于深度卷积神经网络的ImageNet分类. 在NeurIPS.
[19] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-propagation network. In NeurIPs, 1990.
中文翻译:[19] 勒孔, Y., 波瑟, B. E., 登克尔, J. S., 亨德森, D., 霍华德, R. E., 胡伯, W. E., & 杰克尔, L. D. (1990). 基于反向传播网络的手写数字识别. 在NeurIPS.
[20] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In CVPR, 2019.
中文翻译:[20] 李, X., 王, W., 胡, X., & 杨, J. (2019). 选择性核网络. 在CVPR.
[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In CVPR, 2017.
中文翻译:[21] 林, T.-Y., 多拉尔, P., 吉尔什克, R., 何, K., 哈里哈兰, B., & 贝洛尼, S. (2017). 用于目标检测的特征金字塔网络. 在CVPR.
[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In ICCV, 2017.
中文翻译:[22] 林, T.-Y., 戈亚尔, P., 吉尔什克, R., 何, K., & 多拉尔, P. (2017). 用于密集目标检测的焦点损失. 在ICCV.
[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.
中文翻译:[23] 林, T.-Y., 马里, M., 贝洛尼, S., 海斯, J., 佩罗纳, P., 拉马南, D., 多拉尔, P., & 赵尼克, C. L. (2014). 微软COCO:上下文中的常见物体. 在ECCV.
[24] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
中文翻译:[24] 洛, D. G. (2004). 基于尺度不变关键点的显著图像特征. 国际计算机视觉杂志.
[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design. arXiv preprint arXiv:1807.11164, 2018.
中文翻译:[25] 马, N., 张, X., 郑, H.-T., & 孙, J. (2018). ShuffleNet V2:高效CNN架构设计的实用指南. arXiv预印本arXiv:1807.11164.
[26] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So Kweon. Bam: Bottleneck attention module. arXiv preprint arXiv:1807.06514, 2018.
中文翻译:[26] 公园, J., 伍, S., 李, J.-Y., & 丘恩, I. S. (2018). BAM:瓶颈注意力模块. arXiv预印本arXiv:1807.06514.
[27] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Pytorch: Tensors and dynamic neural networks in python with strong gpu acceleration. PyTorch: Tensors and dynamic neural networks in Python with strong GPU acceleration, 2017.
中文翻译:[27] 沃兹克, A., 格罗斯, S., 奇塔拉, S., & 查南, G. (2017). PyTorch:Python中的张量和动态神经网络,具有强大的GPU加速. PyTorch: Python中的张量和动态神经网络,具有强大的GPU加速.
[28] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization. arXiv preprint arXiv:1903.10520, 2019.
中文翻译:[28] 乔, S., 王, H., 刘, C., 神, W., & 尤尔, A. (2019). 权重标准化. arXiv预印本arXiv:1903.10520.
[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NeurIPS, 2015.
中文翻译:[29] 任, S., 何, K., 吉尔什克, R., & 孙, J. (2015). Faster R-CNN:使用区域提议网络实现实时目标检测. 在NeurIPS.
[30] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.
中文翻译:[30] 拉什, A. M., 乔普拉, S., & 韦斯顿, J. (2015). 用于提取性句子摘要的神经注意力模型. arXiv预印本arXiv:1509.00685.
[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, 2015.
中文翻译:[31] 罗萨科夫斯基, O., 邓, J., 苏, H., 克劳斯, J., 萨特希什, S., 马, S., 黄, Z., 卡帕西, A., 赫斯拉, A., 伯恩斯坦, M., 等. (2015). ImageNet大规模视觉识别挑战. 国际计算机视觉杂志.
[32] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In NeurIPs, 2017.
中文翻译:[32] 萨博, S., 弗罗斯特, N., & 辛顿, G. E. (2017). 胶囊之间的动态路由. 在NeurIPS.
[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.
中文翻译:[33] 桑德勒, M., 霍华德, A., 朱, M., 茹莫吉诺夫, A., & 陈, L.-C. (2018). MobileNetV2:倒置残差和线性瓶颈. 在CVPR.
[34] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.
中文翻译:[34] 西奥, M., 肯巴维, A., 法拉迪, A., & 哈吉什里齐, H. (2016). 用于机器理解的双向注意力流. arXiv预印本arXiv:1611.01603.
[35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
中文翻译:[35] 西莫尼亚, K., & 西瑟曼, A. (2014). 用于大规模图像识别的非常深的卷积网络. arXiv预印本arXiv:1409.1556.
[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015.
中文翻译:[36] 谢盖迪, C., 刘, W., 贾, Y., 赛尔曼特, P., 瑞德, S., 安格洛夫, D., 埃尔汉, D., 范豪克, V., & 拉宾诺维奇, A. (2015). 通过卷积加深网络. 在CVPR.
[37] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016.
中文翻译:[37] 谢盖迪, C., 范豪克, V., 约夫, S., 谢伦斯, J., & 沃伊纳, Z. (2016). 重新思考用于计算机视觉的Inception架构. 在CVPR.
[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPs, 2017.
中文翻译:[38] 瓦斯瓦尼, A., 沙泽尔, N., 帕尔马, N., 乌斯科雷特, J., 琼斯, L., 戈麦斯, A. N., 卡伊泽, L., & 波洛苏金, I. (2017). 注意力就是一切. 在NeurIPS.
[39] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classification. arXiv preprint arXiv:1704.06904, 2017.
中文翻译:[39] 王, F., 蒋, M., 钱, C., 杨, S., 李, C., 张, H., 王, X., & 汤, X. (2017). 用于图像分类的残差注意力网络. arXiv预印本arXiv:1704.06904.
[40] Wenhai Wang, Xiang Li, Jian Yang, and Tong Lu. Mixed link networks. arXiv preprint arXiv:1802.01808, 2018.
中文翻译:[40] 王, W., 李, X., 杨, J., & 卢, T. (2018). 混合链接网络. arXiv预印本arXiv:1802.01808.
[41] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In CVPR, 2018.
中文翻译:[41] 王, X., 吉尔什克, R., 古普塔, A., & 何, K. (2018). 非局部神经网络. 在CVPR.
[42] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. arXiv preprint arXiv:1807.06521, 2018.
中文翻译:[42] 伍, S., 公园, J., 李, J.-Y., & 丘恩, I. S. (2018). CBAM:卷积块注意力模块. arXiv预印本arXiv:1807.06521.
[43] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.
中文翻译:[43] 吴, Y., & 何, K. (2018). 组归一化. 在ECCV.
[44] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In CVPR, 2017.
中文翻译:[44] 谢, S., 吉尔什克, R., 多拉尔, P., 屠卓文, & 何, K. (2017). 深度神经网络的聚合残差变换. 在CVPR.
[45] Kai Xu, Dawei Li, Nick Cassimatis, and Xiaolong Wang. Lcanet: End-to-end lipreading with cascaded attention-ctc. In International Conference on Automatic Face & Gesture Recognition, 2018.
中文翻译:[45] 徐, K., 李, D., 卡西马提斯, N., & 王, X. (2018). LCANet:端到端的级联注意力-CTC唇读. 在自动人脸与手势识别国际会议.
[46] X Zhang, X Zhou, M Lin, and J Sun. Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.
中文翻译:[46] 张, X., 周, X., 林, M., & 孙, J. (2017). ShuffleNet:适用于移动设备的极其高效的卷积神经网络. arXiv预印本arXiv:1707.01083.
[47] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel attention networks. arXiv preprint arXiv:1807.02758, 2018.
中文翻译:[47] 张, Y., 李, K., 李, K., 王, L., 钟, B., & 福, Y. (2018). 使用非常深的残差通道注意力网络实现图像超分辨率. arXiv预印本arXiv:1807.02758.