第二章 流体及其物理性质
第三节 作用在流体上的力 表面力 质量力
(1)表面力
定义表面力为所取流体团表面上所受的力。设有一流体团 C C C,在其表面上 b b b点取一微小面积 δ A \delta A δA,设该微小面积上所受的力为 δ F ⃗ \delta \vec{F} δF,该力分为法向力 δ F ⃗ n \delta \vec{F}_n δFn与 δ F ⃗ τ \delta \vec{F}_\tau δFτ。当 δ A \delta A δA趋向于无穷小时,则得使用在表面 b b b点处单位面积上的力:
p ⃗ n = lim δ A → 0 δ F ⃗ δ A \vec{p}_n=\lim _{\delta A \to 0} \frac{\delta \vec{F}}{\delta A} pn=δA→0limδAδF
称为应力,单位为Pa。
P
⃗
n
\vec{P}_n
Pn的方向通常与所取流体团表面法线方向
n
⃗
\: \vec{n}\:
n不一致,也与时间
t
t
t有关,即:
P
⃗
n
=
f
(
x
,
y
,
z
,
n
⃗
,
t
)
\vec{P}_n=f(x,y,z,\vec{n},t)
Pn=f(x,y,z,n,t)
注: n ⃗ \vec{n}\: n参数表示,有多个流体团的表面积经过 ( x , y , z ) (x,y,z) (x,y,z)点,取表面法线方向为 n ⃗ \: \vec{n}\: n的流体团
而在理想无黏流体中,无切向的表面力,只有法向的?
(2)质量力
力场作用在流体全部质点(体积)上的力,包含重力与惯性力。
当一流体微团受到平均绝对加速度
a
⃗
\:\vec{a}\:
a时,则虚加在微小体积上的惯性力可表示为
−
ρ
δ
V
a
⃗
- \rho \delta V \vec{a}
−ρδVa。这表明,若某流体团所受表面力为零,则其所受的总的质量力也为零。?(静时受表面力,自由时加速度对应性力等于其它质量力的合反向)
可以用
f
⃗
\vec{f}
f表示作用在单位质量流体上的质量力,有:
F ⃗ 质 = f ⃗ ρ δ V \vec{F}_质=\vec{f}\rho\delta V F质=fρδV
其中 F ⃗ 质 \vec{F}_质\: F质为所取流体团所受的总质量力。
用 f x , f y , f z \:f_x,f_y,f_z\: fx,fy,fz 表示直角坐标轴的分力,用 i ⃗ , j ⃗ , k ⃗ \vec{i},\vec{j},\vec{k} i,j,k 表示各直角坐标轴单位矢量,则:
f ⃗ = f x i ⃗ + f y j ⃗ + f z k ⃗ \vec{f}=f_x\vec{i}+f_y\vec{j}+f_z\vec{k} f=fxi+fyj+fzk