《流体力学》作用在流体上的力 表面力 质量力

第二章 流体及其物理性质

第三节 作用在流体上的力 表面力 质量力

(1)表面力

定义表面力为所取流体团表面上所受的力。设有一流体团 C C C,在其表面上 b b b点取一微小面积 δ A \delta A δA,设该微小面积上所受的力为 δ F ⃗ \delta \vec{F} δF ,该力分为法向力 δ F ⃗ n \delta \vec{F}_n δF n δ F ⃗ τ \delta \vec{F}_\tau δF τ。当 δ A \delta A δA趋向于无穷小时,则得使用在表面 b b b点处单位面积上的力:

p ⃗ n = lim ⁡ δ A → 0 δ F ⃗ δ A \vec{p}_n=\lim _{\delta A \to 0} \frac{\delta \vec{F}}{\delta A} p n=δA0limδAδF

称为应力,单位为Pa P ⃗ n \vec{P}_n P n的方向通常与所取流体团表面法线方向   n ⃗   \: \vec{n}\: n 不一致,也与时间 t t t有关,即:
P ⃗ n = f ( x , y , z , n ⃗ , t ) \vec{P}_n=f(x,y,z,\vec{n},t) P n=f(x,y,z,n ,t)

注: n ⃗   \vec{n}\: n 参数表示,有多个流体团的表面积经过 ( x , y , z ) (x,y,z) (x,y,z)点,取表面法线方向为   n ⃗   \: \vec{n}\: n 的流体团

而在理想无黏流体中,无切向的表面力,只有法向的?

(2)质量力

  力场作用在流体全部质点(体积)上的力,包含重力与惯性力。
  当一流体微团受到平均绝对加速度   a ⃗   \:\vec{a}\: a 时,则虚加在微小体积上的惯性力可表示为 − ρ δ V a ⃗ - \rho \delta V \vec{a} ρδVa 这表明,若某流体团所受表面力为零,则其所受的总的质量力也为零。?(静时受表面力,自由时加速度对应性力等于其它质量力的合反向)
  可以用 f ⃗ \vec{f} f 表示作用在单位质量流体上的质量力,有:

F ⃗ 质 = f ⃗ ρ δ V \vec{F}_质=\vec{f}\rho\delta V F =f ρδV

其中 F ⃗ 质   \vec{F}_质\: F 为所取流体团所受的总质量力。

  用   f x , f y , f z   \:f_x,f_y,f_z\: fx,fy,fz 表示直角坐标轴的分力,用 i ⃗ , j ⃗ , k ⃗ \vec{i},\vec{j},\vec{k} i ,j ,k 表示各直角坐标轴单位矢量,则:

f ⃗ = f x i ⃗ + f y j ⃗ + f z k ⃗ \vec{f}=f_x\vec{i}+f_y\vec{j}+f_z\vec{k} f =fxi +fyj +fzk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值