GPS原理和接收机设计 CH4 GPS测量与误差

⭐️本章需要重点理解两种基本的测距方法!! 很重要🚩
🌈GPS接收机若要实现定位,必须解决如下两个问题:一是要知道各颗可见卫星在空间的准确位置,二是要测量从接收机到这些卫星的精确距离。第3章已经解决了第一个问题,而本章将解决第二个问题。

🌱 🌼 🌸

🐬本章的思维导图出炉! 需要的uu 可以免费下载领取噢~~⭐️
https://download.csdn.net/download/qq_53131867/88541387

在这里插入图片描述

🐋冲冲冲~~
🐾 本章概要~~🐾
🍊 首先对于伪距的测量需要重点理解三个时间的关系⭐️
 大致的原理是知道从A地→B地的时间 以及速度 就可以大致知道这两点的距离
 1️⃣接收机时钟 卫星时钟和GPST 这三个是不一样的 为了统一 我们将前面的两个时间转化为和GPST时间的关系,这样就方便做差了 2️⃣考虑完了时钟差 后面还有电离层,对流层 还有其他的各种误差(比如人工建立的模型呀 还有星历的误差 等等)的延时 这些也算是一部分 所以也把这些考虑进去 因此这个大致的的时间得到的大致的距离 就叫伪距 而不是真实的距离 也就是这么来的

🍐载波相位测量
  1️⃣通过比较接收机和卫星发射信号的相位差可以大致知道两者的距离 但是会存在一个周整模糊度 这时我们可以建立伪距和载波相位的一个方程从而大致求解出这个周整模糊度 2️⃣而卫星和接收机的相对运动可以改变相位测量值,这个理论就是多普勒频移 它是一个瞬时值,体现的是接收机在测量时刻相对于卫星瞬时运动的程度 接下来就介绍多普勒积分和失周现象

🍎对于上述的测量必然会出现测量误差 主要就是有三个部分:
 1️⃣与卫星相关(卫星时钟 卫星星历) 2️⃣与信号传播相关(大气延时 电离层和对流层延时) 3️⃣与接收机相关(多径效应 电磁干扰 接收机噪声等等) 这一节主要是讲的是对于各种误差的建模和对于GPS定位精度的影响

🍒差分GPS原理
 基站的来源~~ 主要针对卫星星历 电离层 时钟偏差 多径效应来进行讨论

🍅伪距和载波相位相结合
  主要是取长补短 介绍两种方法 载波相位平滑伪距 和 粗略估计周整模糊度

CH4 GPS测量与误差


​ GPS接收机若要实现定位,则必须解决如下两个问题:1️⃣是要知道各颗可见卫星在空间的准确位置,2️⃣要测量从接收机到这些卫星的精确距离。第3章已经解决了第一个问题,而本章将解决第二个问题。
​ GPS接收机对每颗卫星产生 伪距和载波相位两个基本距离测量值

其中4.1节将介绍伪距和与之相关的测距码码相位测量值,而4.2节将介绍载波相位及其相关的多普勒频移和积分多普勒测量值。接着,4.3节将详细分析GPS测量值中的各个误差成分,而4.4节将简单介绍能够有效降低或者消除测量误差的差分GPS原理。根据伪距与载波相位测量值之间的相互关系,4.5节将首先介绍经载波相位测量值平滑后的伪距,然后给出一种利用伪距来粗略估算载波相位测量值中的周整模糊度的方法。

4.1 伪距测量值

​ 伪距在GPS领域是一个非常重要的概念,它是GPS接收机对卫星信号的一个最基本的距离测量值。测量多颗可见卫星的伪距是下一章所要介绍的GPS接收机实现单点绝对定位的必要条件。

4.1.1 伪距的概念

​ 某卫星(编号为s)按照其自备的卫星时钟在t(s)时刻发射出某一信号。我们将这个t(s)时刻称为GPS信号的发射时间,该信号在tu时刻被用户GPS接收机接收到,我们 将tu称为GPS信号的接收时间,它是从接收机上的时钟读出来的。这样,我们在此处涉及GPS时间、卫星时钟和接收机时钟三种时间。

用户接收机时钟产生的时间通常与GPS时间不同步。假设对应于信号接收时间tu的GPS时间实际上等于t,那么我们可将GPS时间为t时的接收机时钟tu记为tu(t),并将此时的接收机时钟超前GPS时间的量记为δtu(t),即
t u ( t ) = t + δ t u ( t ) ( 4.1 ) t_u(t)=t+\delta t_u(t)\quad\quad (4.1) tu(t)=t+δtu(t)(4.1)
式中,δtu(t)通常称为接收机时钟钟差,其值通常来说是未知的,并且是关于GPS时间t的函数。

​ 各个卫星时钟也不可能与GPS 时间严格同步。卫星播发的导航电文中的第一数据块含有卫星时钟校正参数,而这些参数正是用来校正卫星时钟钟差即卫星时钟超前GPS时间的量,这使得各个校正后的卫星时钟与GPS时间保持同步。GPS 时间t与卫星时钟t(s)(t)存在以下关系:
t ( s ) ( t ) = t + δ t ( s ) ( t ) ( 4.2 ) t^{(s)}(t)=t+\delta t^{(s)}(t)\quad\quad (4.2) t(s)(t)=t+δt(s)(t)(4.2)
​ 其中,**卫星时钟钟差δt(s)(t)可以视为已知的,**而4.3.1节将介绍如何由卫星时钟校正参数求得此卫星钟差值δt(s)(t)。如果GPS信号从卫星到接收机所需的实际传招时间为τ ,那么依照式(4.2),GPS时间与卫星时钟在信号发射时刻( t-τ)时的关系可表达成

t ( s ) ( t − τ ) = t − τ + δ t ( s ) ( t − τ ) ( 4.3 ) t^{(s)}(t-\tau)=t-\tau+\delta t^{(s)}(t-\tau)\quad(4.3)\quad t(s)(tτ)=tτ+δt(s)(tτ)(4.3)
​ GPS 接收机根据接收机时钟在tu(t)时刻对GPS信号进行采样,然后对采样信号进行处理,可得到标记在GPS信号上的发射时间ts(t-τ)。伪距 ρ(t)定义为信号接收时间tu(t)与信号发射时间ts(t-τ)之间的差异再乘以光在真空中的速度c,即
ρ ( t ) = c ( t μ ( t ) − t ( s ) ( t − τ ) ) ( 4.4 ) \rho(t)=c\left(t_{\mu}(t)-t^{(s)}(t-\tau)\right)\quad\quad (4.4) ρ(t)=c(tμ(t)t(s)(tτ))(4.4)
因为接收机时钟与卫星时钟不同步,所以p(t)被称为“伪”距。将式(4.1)和式(4.3)代入上式,得
ρ ( t ) = c τ + c ( δ t μ ( t ) − δ t ( s ) ( t − τ ) ) (4.5) \rho(t)=c\tau+c\left(\delta t_\mu(t)-\delta t^{(s)}(t-\tau)\right)\quad\text{(4.5)} ρ(t)=cτ+c(δtμ(t)δt(s)(tτ))(4.5)
​ 在大气折射效应的作用下,电磁波在大气层中的实际传播速度要小于其在真空中的速度c。这样,GPS信号的实际传播时间τ可想象成由以下两部分组成1️⃣是信号以真空光速c穿过卫星与接收机之间的几何距离r所需的传播时间,2️⃣是大气折射造成的传播延时,即
τ = r ( t − τ , t ) c + I ( t ) + T ( t ) ( 4.6 ) \tau=\frac{r(t-\tau,t)}{c}+I(t)+T(t)\quad\quad (4.6) τ=cr(tτ,t)+I(t)+T(t)(4.6)
​ 其中,大气传播延时又被分解成电离层延时I(t)和对流层延时T(t)两部分,它们的值可经测量或利用数学模型估算获得,因而可以视为已知的:而几何距离r(t-τ,t)代表(t-τ)时的卫星位置与t时的接收机位置之间的直线距离。 因为接收机位置待定,所以几何距离r(t-τ,t)是一个未知量。
将式(4.6)代人式(4.5),得
ρ ( t ) = r ( t − τ , t ) + c ( δ t μ ( t ) − δ t ( t ) ( t − τ ) ) + c I ( t ) + c T ( t ) + ϵ ρ ( t ) ( 4.7 ) \rho(t)=r(t-\tau,t)+c\Bigl(\delta t_\mu(t)-\delta t^{(t)}(t-\tau)\Bigr)+cI(t)+cT(t)+\epsilon_\rho(t)\quad(4.7) ρ(t)=r(tτ,t)+c(δtμ(t)δt(t)(tτ))+cI(t)+cT(t)+ϵρ(t)(4.7)
​ 我们注意到,式(4.7)引入了一个值未知的伪距测量噪声量εp(t),它代表了所有未直接体现在式(4.7)中的各种误差总和。例如,由卫星星历参数得到的卫星位置、卫星时钟校正模型和大气延时估计值等存在着不可避免的误差,并且伪距测量值还受到多路径、接收机噪声等多种误差源的影响。而我们将会在4.3节详细分析各种误差源。式(4.7)中的钟差和各项测量误差再次说明了由式(4.4)定义的ρ(t)是“伪”距,而不是真正的几何距离r(t -τ,t)

​ 在理解并牢记了伪距中的卫星位置是在信号发射时刻而接收机位置是在信号接收时刻这一区别后,我们可省略式(4.7)中的时间标志而简写成
ρ = r + c ( δ t u − δ t ( s ) ) + c I + c T + ϵ ρ ( 4.8 ) \rho=r+c\Big(\delta t_u-\delta t^{(s)}\Big)+cI+cT+\epsilon_\rho\quad(4.8) ρ=r+c(δtuδt(s))+cI+cT+ϵρ(4.8)
🌼很重要!!

上式称为伪距观测方程式,它在GPS定位中极为重要,是接收机利用伪距实现单点绝对定位的基本方程式。

​ 需要说明的是,在不引起混淆的情况下,表面上看起来代表着时间和长度的不同物理参量在GPS领域中经常被混合使用,而时间量与长度量之间的变换因子是光速c。例如,式(4.8)完全可以改写成
ρ = r + c ( ∂ t u − δ t ( s ) ) + I + T + ε ρ (4.9) \rho=r+c\Big(\partial t_u-\delta t^{(s)}\Big)+I+T+\varepsilon_\rho\quad\text{(4.9)} ρ=r+c(tuδt(s))+I+T+ερ(4.9)
甚至可以写成:
ρ = r + δ t u − δ t ( s ) + I + T + ϵ ρ ( 4.10 ) \rho=r+\delta t_u-\delta t^{(s)}+I+T+\epsilon_\rho\quad(4.10) ρ=r+δtuδt(s)+I+T+ϵρ(4.10)
​ 其中,大气延时Ⅰ和T在式(4.8)中是个时间量,可它们在式(4.9)和式(4.10)中是个长度量,而读者自己可轻易地辨别出接收机钟差δtu和卫星钟差δt(s)在上述公式中究竟是个时间量还是长度量。如果各种校正量和误差值是个以秒为单位的时间量,那么它们通常会是个非常小的数,这既不方便也不直观。例如,我们常说电离层延时Ⅰ相当于6m,而很少说它等于2x10-8s,尽管这两种说法本质上一致;再例如,第2章讲到了C/A码,它的码宽既可当做时间量也可当做长度量,一个C/A码码片的宽度约等于10-6s,或者说约等于300 m。一般来说,将伪距观测方程式(4.8)中的所有参量统一转换成以米为单位的长度量这种表达方式会比较方便、实用。

​ 伪距观测方程式中的δt(s),Ⅰ和T均可视为已知量,故我们可定义校正后的伪距测量值 ρc
ρ c = ρ + δ t ( s ) − I − T ( 4.11 ) \rho_c=\rho+\delta t^{(s)}-I-T\quad(4.11) ρc=ρ+δt(s)IT(4.11)
这样,式(4.10)可改写成
r + δ t u = ρ c − ϵ ρ ( 4.12 ) r+\delta t_u=\rho_c-\epsilon_\rho\quad(4.12) r+δtu=ρcϵρ(4.12)
​ 上式将未知量δtu和含有未知参数的量r全部移到了等号左边,而将已知的测量值pc移到了等号右边,这便于在下一章建立伪距定位方程式。

4.1.2 伪距与测距码相位

​ 上一小节指出,**伪距是信号接收时间tu与信号发射时间t(s)之间的差异再乘以真空光速,其中信号接收时间tu是直接从GPS 接收机时钟上读出的,而接收机从信号上获取发射时间t(s)就得涉及对信号中测距码(即C/A码)相位的测量。**本节的目的在于阐述伪距与码相位之间的关系。

​ 实际上,接收机直接测量的不是信号发射时间t(s),更不是伪距ρ,而是码相位(CP),它是通过接收机内部码跟踪环路上的C/A码发生器和C/A码相关器获得的。如图4.2所示,🐬 接收机通过码相关器对接收到的卫星信号与其内部复制的C/A码做相关分析,并利用第2章所介绍的C/A码良好的自相关特性,从而测得在接收时刻tu时所接收到的卫星信号中的C/A码相位值CP。所谓码相位,指的是最新接收到的片刻C/A码在一整周期C/A码中的位置,其值在0~1023码片之间,并且通常不是个整数。
在这里插入图片描述

​ 根据式(4.13)组装完信号发射时间ts后,伪距测量值ρ则可由式(4.4)计算求得。我们从测量PRN的码相位而得到伪距,这也就是C/A码和P(Y)码又被称为测距码的根本原因。

4.2 载波相位测量值

4.2.1 载波相位的概念

核心:通过相位可以大致知道两点之间的距离,只不过会存在一个模糊度。

比如相位相差180° 则两点之间相差(λ/2+N)N是整数倍波长

在这里插入图片描述

​ 假设卫星和接收机的相位是同步的,当卫星的载波发送过来的时候,此时接收机检测卫星发送的载波和自己本身的载波的相位,得到相位的差值。

​ 我们再假设载波相位的测量不受钟差、大气延时等其他各种误差的干扰,那么根据本小节前面所讨论的在信号传播途径上两点间的载波相位差与距离的关系,可得
ϕ = λ − 1 r + N (4.15) \phi=\lambda^{-1}r+N\quad\text{(4.15)} ϕ=λ1r+N(4.15)
其中,r仍为卫星与接收机之间的几何距离,而N是个未知的整数。N通常称为周整模糊度,而求解周整模糊度N的方法又常称为周整模糊度的确定。如果能确定载波相位测量值中的周整模糊度值N,那么我们可根据式(4.15)由Φ反推出几何距离r
在这里插入图片描述

现在,我们将接收机钟差、卫星钟差和大气延时等各种误差因素考虑到式(4.15)中去,得到如下的载波相位观测方程式:
ϕ = λ − 1 ( r + c ( ∂ t u − δ t ( s ) ) − I + T ) + N + ϵ ϕ ( 4.16 ) \phi=\lambda^{-1}\Big(r+c(\partial t_u-\delta t^{(s)})-I+T\Big)+N+\epsilon_\phi\quad(4.16) ϕ=λ1(r+c(tuδt(s))I+T)+N+ϵϕ(4.16)
或者
ϕ = λ − 1 ( r + δ t u − δ t ( s ) − I + T ) + N + E ϕ ( 4.17 ) \phi={\lambda}^{-1}\left(r+\delta t_{u}-\delta t^{(s)}-I+T\right)+N+{\cal E}_{\phi}\quad(4.17) ϕ=λ1(r+δtuδt(s)I+T)+N+Eϕ(4.17)
​ 它是利用载波相位测量值进行定位的基本方程式。只有载波相位差或者说载波相位变化量才包含着距离信息,而仅在一点处某一时刻的载波相位(通常不说明任何问题。在不引起混淆的情况下,我们总是将这种载波相位差的测量值简称为载波相位。

4.2.2 多普勒频移与积分多普勒

⭐️多普勒效应

​ 一个静止不动的信号发射塔播发频率为f的信号,而接收机以速度v运行,那么接收机接收到的信号频率fr,不再是信号的发射频率f,而是f+ fd。我们将这种信号接收频率fr,随信号发射源与接收机之间的相对运动而发生变化的现象称为多普勒效应,而将fd称为多普勒频移。这样,多普勒频移fd等于信号接收频率fr与发射频率f之间的差异,即
f d = f r − f ( 4.18 ) f_d=f_r-f\quad(4.18)\quad fd=frf(4.18)
从电磁波的传播的基本理论出发,可以严格推导出一下多普勒频移值fd的计算公式:
f d = v λ cos ⁡ β = v c f cos ⁡ β ( 4.19 ) f_d=\frac{v}{\lambda}\cos\beta=\frac{v}{c}f\cos\beta\quad(4.19) fd=λvcosβ=cvfcosβ(4.19)
​ 其中,λ是与信号发射频率f相对应的信号波长,c为光速,β为信号入射角。对于静态信号发射源这种情况,信号入射角β指的是从接收机的运动方向到信号入射方向的夹角。

​ 🌴 ​当接收机朝信号发射塔方向运动时,信号入射角的绝对值|β|小于90°,那么由式(4.19)计算所得到的多普勒频移fd大于零,即信号接收频率大于其发射频率。对此的一种形象理解是:当接收机朝信号发射源方向运动时,因为它在相同的时间里接收到的载波周数比其静止时更多,所以接收信号的频率变高。如果接收机的运动方向与信号入射方向垂直,即|β|等于90°,那么多普勒频移为零。尽管此时接收机与信号发射源存在相对运动,但两者之间的距离却瞬间保持不变。可见,多普勒效应反映的是信号发射源与信号接收机之间连线距离的变化快慢,是与接收机运行速度在信号入射方向上的投影成正比的。

​ 式(4.19)很容易被推广到移动型信号发射源的情况。如图4.5(b)所示,运行速度为v(s)的卫星发射频率为f、相应波长为λ的载波(如LI或L2)信号,而接收机的速度为v,那么该接收机接收到的卫星载波信号的多普勒频移为
f d = ( ν − ν ( s ) ) ⋅ I ( s ) λ = − ( ν ( s ) − ν ) ⋅ I ( s ) λ = − r ˙ λ ( 4.20 ) f_d=\frac{(\nu-\nu^{(s)})\cdot I^{(s)}}{\lambda}=-\frac{(\nu^{(s)}-\nu)\cdot I^{(s)}}{\lambda}=\frac{-\dot{r}}{\lambda}\quad(4.20)\quad fd=λ(νν(s))I(s)=λ(ν(s)ν)I(s)=λr˙(4.20)
​ 🍊 其中,I(s)是卫星在接收机处的单位观测矢量,它的计算方法可参考式(3.14)。我们知道,一个矢量与一个单位矢量的点积(也称内积)等于该矢量在单位矢量方向上的投影长度,于是接收机相对于卫星的运行速度(v-vs)与单位观测矢量I(s)的点积,就等于接收机向卫星靠近的距离变化率,即(-r),其中r代表卫星与接收机之间的几何距离r对时间的导数。当卫星与接收机相对远离时,r值为正,(-r)为负,从而多普勒频移fd也就是个负数,即接收机接收到的卫星载波频率小于其发射频率f。此时,若接收机内部复制的载波频率仍为f,则复制载波的相位变化要快于接收到的卫星载波信号的相位变化,因而由式(4.14)所给出的相位差朝正的方向变大。这就是说,当卫星与接收机相对远离时,载波相位测量值Φ变大,而这至少说明了几何距离r的值与载波相位Φ的值在变化方向上是一致的。

​ 积分多普勒dΦ是多普勒频移fd对时间的积分,即
d ϕ k ≡ d ϕ ( t k ) = − ∫ t 0 t k f d ( t ) d t ( 4.21 ) \text{d}\phi_k\equiv\text{d}\phi(t_k)=-\int\limits_{t_0}^{t_k}f_d(t)\text{d}t\quad(4.21)\quad dϕkdϕ(tk)=t0tkfd(t)dt(4.21)
其中,dΦ代表接收机在历元k时输出的积分多普勒测量值。在载波跟踪环路刚锁定或重锁载波信号的那一刻,接收机一般将积分多普勒值重置为零,而式(4.21)将这一时刻标记成历元0。**接收机对多普勒频移进行积分相当于对多普勒频移引起的载波相位变化进行以周为单位的计数,于是在历元k时的积分多普勒值dΦk**就等于从历元0到历元k这段时间内载波相位测量值的变化量,而 **dΦk乘以波长λ后的值就应当等于这段时间内卫星与接收机之间的距离变化量。**事实上,若式(4.20)中的最后一项(即

-r/λ)对时间进行同样的积分,则此积分结果恰好等于几何距离r的变化量除以波长λc。这样,积分多普勒测量值 dΦk完全反映了几何距离r的变化大小和方向,因而积分多普勒又时常称为积分距离差(ADR)。反过来,式(4.21)暗示着积分多普勒dg对时间的导数等于多普勒频移fd乘以-1。

🍎 联系如此紧密的积分多普勒与多普勒频移测量值之间存在如下重要的区别:1️⃣多普勒频移是-个瞬时值,它体现的是用户接收机在测量时刻相对于卫星的瞬间运动速度;2️⃣积分多普勒是一个平均值,**两时刻之间的积分多普勒测量值体现的是这一时段内用户相对于卫星的总位移,而运动总位移反映的是运动的平均速度。**接收机一般会同时输出多普勒频移和载波相位测量值。

⭐️总结一下就是

​ 接收机内部复制的载波频率仍为f,发生多普勒效应时,复制载波的相位变化要和接收到的卫星载波信号的相位发生变化,也就是载波的差值。当卫星与接收机相对远离时,这个时候接收机实际受到的卫星载波信号的频率是比复制的载波频率低的,根据公式可以知道,载波相位测量值Φ变大,而这至少说明了几何距离r的值与载波相位Φ的值在变化方向上是一致的。

伪距ρ并不是接收机码跟踪环路的基本测量值.而从以上的讨论可以看出,载波相位也并不是载波跟踪环路的基本测量值。对于采用频率锁定环路的接收机而言,1️⃣它首先需要将多普勒频移测量值进行积分才能获得积分多普勒测量值,2️⃣然后与采用相位锁定环路的接收机一样,要么直接将积分多普勒值 dΦk当做载波相位测量值Φ输出,要么将积分多普勒值补上若干整数周,使其以距离为单位的值大致与伪距测量值接近后,​​再当做载波相位测量值输出。 ​(🌱对于周整模糊度的处理)

​ 无论接收机所输出的载波相位测量值是经何种载波跟踪环路产生的,它总会包含一个未知的周整模糊度。当载波跟踪环路对信号失锁后又重锁时,它输出的载波相位测量值中的周整模糊度通常会发生跳变,也就是说,周整模糊度的值在信号失锁前后是不一样的。有时候接收机虽然尚未声明信号完全失锁,但是其输出的载波相位测量值也有可能出现整周数的跳变误差。我们将载波相位测量值发生周整模糊度跳变的现象称为失周,而随着接收机及其信号跟踪环路功能的提高,失周现象发生的频率将变得越来越低。最后需要指出的是,如果载波跟踪环路不发生信号失锁和相位失周等现象,那么两时刻之间的积分多普勒(或者说载波相位)测量值之差没有模糊度。

4.2.3伪距和载波相位的对比

​ 🍐 伪距和载波相位是GPS接收机的两个基本距离测量值,两者既有明显区别,又呈互补特性。
​ 🍎由式(4.4)得到的伪距测量值尽管包含钟差、大气延时等各种误差,但它真实地反映了卫星与接收机之间的距离,没有类似于载波相位测量值中的模糊度问题。在同一时刻利用至少4颗不同可见卫星的伪距测量值,接收机就可以实现三维绝对定位与定时。然而,载波相位测量值含有一个未知的周整模糊度,因而若只利用载波相位测量值而不借助伪距,则接收机一般是不可能实现单点绝对定位的。

​ 🍌尽管载波相位测量值含有周整模糊度,但是它非常平滑,精度很高。载波L1一周仅长19 cm,而接收机载波跟踪环路对载波相位的测量精度可达1/4周;这就是说载波相位的测量精度约为几毫米左右。相比之下,伪距(以及码相位)测量值就显得甚是粗糙。一个C/A码的码片长约300 m,而码跟踪环路只能把码相位确定到几米的精度。另外,多路径效应对码相位测量值的影响也远远大于对载波相位测量值的影响。

​ 计算伪距所需的信号发射时间,是根据式(4.13)将码相位测量值与其他几部分装配起来的。实际上,对于采用相位锁定环路型的接收机而言,它所输出的载波相位测量值也可分成两部分:周内值和整周数。 所谓周内值,它指的是由相位锁定环路测定的、其值小于一周的载波相位那部分。当相位锁定环路发生失周现象时,周内值可能还是正确的,但整周数会出现跳变。

​ 因为接收机可利用导航电文的格式和信息将码相位最终转换成唯一与其相对应的信号发射时间和伪距,所以伪距不存在模糊度问题。然而,如果接收机只测得码相位CP而没能确定式(4.13)中的其他几项值,比如接收机对接收到的卫星信号尚未进入子帧同步状态,或者还没有编译出导航电文中的周内时(TOW),那么信号发射时间r就难以得到确定。将码相位转换成伪距的过程也就会遇到模糊度问题,而这个模糊度可能是1 ms或20 ms的整数倍。我们知道,GPS 卫星的运行轨道高度约为20 200 km,这大致相当于平均值为78 ms 的信号传播时间。考虑到1比特长20 ms、一周C/A码长 1 ms,若再借助其他信息,则接收机有可能在未达到子帧同步状态之前就可以解决这种伪距模糊度问题。

​ 🌱与人们很少提及伪距中的模糊度不同,载波相位测量值中的周整模糊度问题却众所周知。一个载波L1的波长仅长19 cm,但是测量值中的各种误差、噪声却可达几米,而卫星与接收机之间的距离则更达20 000 km,这使得周整模糊度的求解变得非常复杂、困难。如果载波波长很长,长得夸张到可与卫星运行高度值相比拟的程度,那么载波相位测量值也就不存在周整模糊度的问题了,或者说周整模糊度很容易被确定。事实上,早在计划创建GPS之前,已进入开发、运行阶段的奥米茄(Omega)无线电定位系统就是通过发射波长为几十千米或等效于上百千米的不同载波信号,来使得接收机可直接利用载波相位测量值对已知位置在几千米、几十千米范围内的用户进行精确地绝对定位的。

​🌼 伪距在过去一直被视为GPS接收机最主要的基本距离测量值,然而现在情况正在发生转变,载波相位正显得越来越重要,越来越受到大家的关注。若一个接收机的定位算法看上去未直接采用载波相位测量值,则该接收机基本上还是采用了将在4.5.1节中所介绍的用载波相位来平滑伪距的方法。这就更不用提及实现高精度定位的实时动态差分系统(见第7章),因为在这些系统中,载波相位的作用可占据主导地位,而伪距的功能最多是用来帮助确定载波相位中的周整模糊度而已。

4.3 测量误差

在这里插入图片描述

​ 伪距和载波相位测量值包含各种误差。GPS的测量误差按照其来源可以分为以下三方面:

🍒与卫星有关的误差:这部分误差主要包括卫星时钟误差和卫星星历误差,它们是由于GPS地面监控部分不能对卫星的运行轨道和卫星时钟的频漂做出绝对准确的测量、预测而引起的。

🌴与信号传播有关的误差:GPS信号从卫星端传播到接收机端需要穿越大气层,而大气层对信号传播的影响表现为大气延时。大气延时误差通常被分成电离层延时和对流层延时两部分。

🌸与接收机有关的误差:接收机在不同的地点可能会受到不同程度的多路径效应和电磁干扰,而这部分误差还包括接收机噪声和软件计算误差等

​ 测量误差的两个重要特征是其大小变化快慢。根据它们的变化快慢这个特征来分,上述各种误差可以分成偏差和噪声两类。

🌳 偏差指的是那些在一段时间内变化较慢的误差。例如,电离层延时的大小一般在几秒甚至几分钟的时间内基本不变,因而它是一种偏差误差。考虑到偏差量的大小具有一定的稳定性,我们有可能直接测量或者用数学模型来预测偏差值,然后以此用来校正GPS 测量值。

🍅 ​ ​与偏差相反,噪声是变化很快的一类误差,它的大小一般很难被预测或测定,但我们还是有可能掌握噪声在一段时间内的均值、方差、相关函数和功率频谱密度(PSD)函数等统计特性。

​ 由于我们所考虑的时间段有长有短,因而误差的这种分类不是绝对的,有些偏差在另一种环境下则可被视为是噪声,反之亦然。

4.3.1 卫星时钟误差

​ 卫星上作为时间和频率来源的原子钟存在着必然的时间偏差和频率漂移。

​ 尽管卫星导航电文的第一数据块给出了参考的时间和校正后的时钟值,但是还是会与GPS时间存在着一定的差异。而卫星时钟的误差就是这个钟残存差异.

🌸其中时钟差大致包括

  1. 卫星导航电文第一数据块给出的 toe 和三个二项式系数 形成Δt

  2. 相对论效应的矫正量 Δtr

  3. 群波延时校正值(单频接收机 也是由第一数据库给出) δt(s) :可作为已知值出现在伪距观测方程式和载波相位方程式中

4.3.2 卫星星历的误差

​ GPS地面监控部分用16个星历参数来描述、预测卫星的运行轨道,但是因为GPS卫星在运行中会受到各种复杂甚至尚不清晰的摄动力影响,所以这一轨道模型与卫星的真实运行轨道之间存在着必然差异。

​ 由星历参数计算得到的卫星位置误差在空间可分解成3个分量:(1)在地心与卫星连线方向上的径向分量;(2在轨道平面内与径向垂直并指向卫星运动方向上的切向分量;(3)与轨道面垂直的横向分量。

​ 在这三个方向上的卫星星历误差分量中,径向误差对卫星与接收机之间的伪距测量影响较大,而切向和横向误差投影到卫星在接收机处的观测矢量方向上后,它们对伪距测量的影响变得较小。庆幸的是,由星历参数计算得到的卫星位置中,其径向分量误差较小,一般小于切向和横向分量误差。卫星星历的三维误差均方差大致为3~5 m,而这大致引起均方差约为2m的伪距测量误差。

4.3.3 电离层延时

​ 离地面约70~1000 km 的大气层称为电离层,而电离层中的大气分子在太阳光的照射下会分解成大气电离子和电子。当电磁波穿过充满电子的电离层时,它的传播速度和方向会发生改变,这种现象在光学物理中称为折射。如果一介质的折射率为n ,那么光在这一介质中的传播速度为c/n,其中c为光在真空中的传播速度。

​ 弥散性的电离层降低了测距码的传播速度,造成伪距测量值变长;相反,电离层却加快了载波相位的传播速度,造成载波相位测量值变短。电离层的这种分别对伪距与载波相位测量值造成大小相等、方向相反的延时误差现象,称为电离层的码相位-载波相位的反向特性。

​ 电离层延时一般为几米左右,但当太阳黑子活动增强时,电离层中的电子密度会升高,这使得电离层延时也随之增加,其值可达十几米甚至几十米,因而GPS通常不能忽略电离层延时对GPS测量和定位的影响。由于单频接收机不能测定电离层延时的大小,故只能借助一些数学模型来估算、校正电离层延时。

​ 🌳 不管是单频接收机的模型估算,还是双频接收机的直接测定,电离层延时值,均会与GPS 信号所实际受到的电离层延时之间存在一个必然的差异,而这一差异部分称为GPS测量值中的电离层延时误差(或电离层延时校正误差)。电离层延时的模型误差大约为1~5 m,它大致能校正真实电离层延时误差的50%,而由双频测定所造成的电离层延时误差较小,大约为1 m

4.3.4 对流层延时

​ 对流层位于大气层的底部,其顶部离地面约40 km,各种气象现象都主要发生在这一层。对流层集中了大气层中 99%的质量,其中的氧气、氮气和水蒸气等是造成GPS信号传播延时的原因。与电离层不同,对流层基本上可以视为一种非弥散性介质,即它的折射率n与电磁波的频率无关,于是GPS信号的相速与群速在对流层中相等。

对流层延时T可作为已知量出现在GPS观测方程式(4.10)和式(4.17)中,而这个估算值T与信号真正受到的对流层延时之间的差异是GPS 测量值中的对流层延时误差。对流层延时在天顶方向上约为2.6 m,在低于10°的高度角方向上可达20 m,而在没有实时气象资料情况下依据模型校正后,天顶方向上的对流层延时误差一般在0.1~1 m左右。

4.3.5 多路径

​ 多路径现象指的是接收机天线除了接收到一个从GPS 卫星发射后经直线传播的电磁波信号之外,还可能接收到一个或多个由该电磁波经周围地物反射后的信号,而每个反射信号又可能是经过一次或多次反射后到达天线的。经一次反射后的反射波。事实上,多路径与大家所熟悉的光的反射属于同一种现象。对于处在L波段上的GPS 载波信号而言,金属和水面等均是良好的反射体。

​ 与相应的直射波相比,多路径信号的一个重要特征是其传播路径较长,因而要较迟到达接收天线。这样,多路径信号的传播延时t通常总是个正值,它短则几十米,长则几百米。一般来说,低仰角卫星信号发生多路径现象的概率比高仰角卫星信号发生多路径现象的概率要大。卫星仰角越高,所产生的多路径延时通常越短,并且功率越强。因为信号经无源反射体的反射后强度变弱,并且反射波需要穿过比直射波较长的传播途径才能到达天线,所以接收机所接收到的反射波信号强度通常比相应的直射波信号要弱,即衰减系数α的值通常小于1,但也有例外。假如直射波信号在其传播途径因需穿透浓厚的树叶层等障碍物而强度变弱很多,那么反射波信号的功率就有可能比直射波信号要强。虽然直射波在上式所表达的接收信号模型中必然存在,但是如果直射波被建筑物等挡住,那么天线甚至可能只接收到某个卫星信号的反射波而没有其直射波。

​ 我们知道,接收机内部复制C/A码,然后将此复制码与其接收到的GPS信号做相关运算,最后根据所得的C/A码自相关函数的峰值来测量码相位。如果接收到的GPS信号是由直射波和多个反射波叠加而成的,那么接收机内部复制的C/A码会同时与直射波和各个反射波做相关运算,使原本只反映直射波码相位情况的三角形自相关函数主峰遭到变形、破坏,从而降低了码相位(以及伪距)的测量精度,严重时还可导致码相位失锁和卫星信号失踪。

​ 多路径不仅严重影响着接收机对伪距测量值的准确度,而且它对载波相位的准确测量也有一定程度的干扰。

⭐️ 这种由多路径引起的使GPS接收机对信号的测量值产生误差和对信号的跟踪造成困难的影响,称为多路径效应,而不同强度、延时与相位状态的反射波会引起不同程度的多路径效应。

​ 一般说来,短延时多路径的效应难以被接收机抑制或消除,它比延时长的多路径更具有危害性。对于动态接收机来说,多路径误差值的大小显得相当随机;对于静态接收机来说 ,多路径误差值并不呈正态分布,而是随着卫星的移动可以略呈周期为几分钟的正弦波动。由多路径引起的伪距误差一般为1~5 m,载波相位误差为1~5cm。

4.3.6 接收机噪声

​ 这里所指的接收机噪声具有相当广泛的含义,它包括天线、放大器和各部分电子器件的热噪声、信号量化误差、卫星信号间的互相关性、测定码相位与载波相位的算法误差以及接收机软件中的各种计算误差等。 接收机噪声具有随机性,其值的正负、大小通常很难被确定。一般来说,接收机噪声引起的伪距误差在1 m之内,而载波相位误差约为几个毫米。

​ 最后需要指出的是,我们所说的**从卫星到用户接收机的距离,实际上指的是卫星天线零相位中心点到接收机天线零相位中心点的距离。**如果接收机天线零相位中心点与我们所关心的用户或用户接收机位置不重合,那么这一差异必须加到接收机定位所给出的天线零相位中心位置上。如果我们忽略这一差异,或者我们测量得到的差异值与其真实值不吻合,那么这一偏差也将最终表现为GPS定位误差。不同类型的用户接收机有着不同的天线零相位中心位置偏差,其值一般在5 mm以内。

4.4 差分GPS原理

⭐️ 差分GPS的基本工作原理主要是依据卫星时钟误差、卫星星历误差、电离层延时与对流层延时所具有的空间相关性和时间相关性这一事实。 对于处在同一地域内的不同接收机,它们的GPS测量值中所包含的上述4种误差成分近似相等或者高度相关。我们通常将其中的一个接收机作为参考之用,并称该接收机所在地为基准站(或基站),而该接收机也就常称为基准站接收机。基准站接收机的位置是预先精确知道的,这样我们就可以准确计算从卫星到基准站接收机的真实几何距离。如果我们将基准站接收机对卫星的距离测量值与这一真实几何距离相比较,那么它们两者的差异就等于基准站接收机对这一卫星的测量误差。

​ 🌴 由于在同一时刻、同一地域内的其他接收机对同一卫星的距离测量值有相关或相近的误差,因而如图4.10所示,如果基准站将其接收机的测量误差通过电波发射台播送给流动站(即用户)接收机,那么流动站就可以利用接收到的基准站接收机的测量误差来校正流动站接收机对同一卫星的距离测量值,从而提高流动站接收机的测量和定位的精度,这就是差分GPS 的基本工作原理。我们通常将这种由基准站播发的、用来降低甚至消除流动站GPS测量误差的校正量称为差分校正量

在这里插入图片描述

​ 很明显,流动站接收机离基准站接收机越近,同一卫星信号到这两个接收机的传播途径也越接近,两接收机之间测量误差的相关性通常就越强,差分系统的工作效果随之就越好。我们通常将这个流动站与基准站之间的距离称为基线长度。例如,一个局域差分系统的基线长通常在20~100 km之内。
​ 同一卫星的时钟偏差对不同的接收机来说是相同的,故**差分技术基本上能全部消除卫星时钟偏差。**正如1.3节所指出的那样,美国政府停止实行SA政策的一个技术上的考虑,就是出于差分技术能消除.卫星时钟SA干扰对GPS测量的影响。卫星钟差变化相当缓慢,大致以1~2 mm/s的速度变化。

​ **卫星星历误差存在着很强的空间和时间相关性。**如果流动站接收机离基准站的距离(即基线长度)为100 km,那么这一距离对于运行高度约为20 200 km的中轨卫星来说,只相当于角度为0.3°的信号传播路径差别,因而卫星空间位置误差在这两个十分相近的传播路径上的投影差别也很小。

🍓多路径情况在基准站与流动站两处可能完全不同,也就是说多路径的空间相关性较弱,但它有时可呈几分钟的时间相关性。不同接收机之间的接收机噪声通常不呈任何相关性,并且同一接收机中的接收机噪声在时间上也不相关,而是呈一种变化很快的随机噪声。因此,多路径与接收机噪声对GPS测量值的影响不能通过差分得到改善; 相反,由它们两者所引起的基准站接收机测量误差会错误地成为差分校正值的一部分而播发给各个流动站接收机,从而使得流动站接收机的这两部分测]量误差不减反增。

​ 考虑到接收机噪声通常比多路径误差小,于是多路径成为差分系统特别是短基线、基于载波相位测量值的差分系统的主要误差源。为了降低基准站接收机的多路径效应与接收机噪声,基准站一般配备高性能GPS 接收机和高性能天线,并且接收机天线又通常安装在地势高而开阔的位置上。

4.5 伪距和载波相位的组合

​ 基本上所有GPS接收机都利用精确、平滑的载波相位测量值来对粗糙但无模糊度的伪距进行不同程度的平滑,而本小节所要介绍的正是经载波相位平滑后的伪距ρs

4.5.1 载波相位平滑伪距

​ 我们在前面曾提到,基本上所有GPS接收机都利用精确、平滑的载波相位测量值来对粗糙但无模糊度的伪距进行不同程度的平滑,而本小节所要介绍的正是经载波相位平滑后的伪距ps
​ 在历元k时的伪距观测方程式(4.9)与载波相位观测方程式(4.16)可分别改写成
ρ k = n k + c ( ∂ t k , k − ∂ t k ( n ) ) + I k + T k + ϵ ρ , k ( 4.81 A ) ϕ k = λ − 1 [ r k + c ( ∂ t k , k − ∂ t k ( n ) ) − I k + T k ] + N + ϵ ϕ , k ( 4.81 B ) \begin{aligned}\rho_k=n_k+c\left(\partial t_{k,k}-\partial t_k^{(n)}\right)+I_k+T_k+\epsilon_{\rho,k}\quad(4.81\mathrm{A})\\ \phi_k=\lambda^{-1}\left[r_k+c\left(\partial t_{k,k}-\partial t_k^{(n)}\right)-I_k+T_k\right]+N+\epsilon_{\phi,k}\quad(4.81\mathrm{B})\\ \end{aligned} ρk=nk+c(tk,ktk(n))+Ik+Tk+ϵρ,k(4.81A)ϕk=λ1[rk+c(tk,ktk(n))Ik+Tk]+N+ϵϕ,k(4.81B)
​ 式(4.81B)假定了在我们所讨论的时段内,接收机–直锁定载波,不发生载波失锁和失周,因而载波相位测量值中的周整模糊度N在各个时刻的值保持不变。若对相邻两个历元的伪距与载波相位分别进行相减,则得
Δ ρ k = Δ r k + c ( Δ δ t k , k − Δ δ t k ( s ) ) + Δ I k + Δ T k + Δ ε ρ , k ( 4.82 A ) λ ⋅ Δ ϕ k = Δ r k + c ( Δ δ t k , k − Δ δ t k ( s ) ) − Δ I k + Δ T k + λ ⋅ Δ ε ϕ , k ( 4.82 B ) \begin{aligned}\Delta\rho_k=\Delta r_k+c\left(\Delta\delta t_{k,k}-\Delta\delta t_k^{(s)}\right)+\Delta I_k+\Delta T_k+\Delta\varepsilon_{\rho,k}&\quad(4.82A)\\ \lambda\cdot\Delta\phi_k=\Delta r_k+c\left(\Delta\delta t_{k,k}-\Delta\delta t_{k}^{(s)}\right)-\Delta I_k+\Delta T_k+\lambda\cdot\Delta\varepsilon_{\phi,k}&\quad(4.82B)\end{aligned} Δρk=Δrk+c(Δδtk,kΔδtk(s))+ΔIk+ΔTk+Δερ,kλΔϕk=Δrk+c(Δδtk,kΔδtk(s))ΔIk+ΔTk+λΔεϕ,k(4.82A)(4.82B)
其中
Δ ρ k ≡ ρ k − ρ k − 1 ( 4.83 A ) Δ ϕ k ≡ ϕ k − ϕ k − 1 ( 4.83 B ) \begin{matrix}\Delta\rho_k\equiv\rho_k-\rho_{k-1}&\quad(4.83\mathsf{A}) \quad\quad\Delta\phi_k\equiv\phi_k-\phi_{k-1}&\quad(4.83\mathsf{B})\end{matrix} Δρkρkρk1(4.83A)Δϕkϕkϕk1(4.83B)
​ 而式(4.82)中的其他各个差分量的定义与式(4.83)相类似。在从式(4.81B)到式(4.82B)的演变过程中,周整模糊度NⅣ被抵消掉了,并且波长被移到了等号的左边。

​ 对比式(4.82A)与式(4.82B)可见:假如电离层延时变化量ΔIk很小,那么伪距变化量Δρ与以距离为单位的载波相位变化量λΔΦk理论上应该相等,只不过前者包含的误差量ΔΦp,k较大,一般是后者误差量λΔερ,k的上百倍。事实上,ΔΦk就是从历元k-1至k期间的积分多普勒,其精度可高达厘米级,并且没有模糊度。因为伪距变化量Δρk与积分距离差λΔΦk在理论上相互接近、相等,所以两者应当能够通过某种方式整合起来而合成出一种即无模糊度又相对平滑的距离测量值。

整合得出:
ρ x , k = 1 M ρ k + M − 1 M [ ρ x , k − 1 + λ ( ϕ k − ϕ k − 1 ) ] ( 4.84 ) \rho_{x,k}=\frac{1}{M}\rho_k+\frac{M-1}{M}\Big[\rho_{x,k-1}+\lambda\big(\phi_k-\phi_{k-1}\big)\Big]\quad(4.84)\quad ρx,k=M1ρk+MM1[ρx,k1+λ(ϕkϕk1)](4.84)
​ 🍎 上式就是被广泛应用的借助载波相位测量值来平滑伪距测量值的平滑器公式。 该平滑器输出的结果ps,k称为在k时的载波相位平滑伪距,而M称为平滑时间常数。M值越大,ps,就越依赖于载波相位变化量,ps,也就越平滑。接收机通常有一个默认的M值,也有可能允许用户自行设置此M值,它一般取值在20~100个历元(秒)之间。
​ 式(4.84)要求接收机持续地锁定载波相位。如果接收机发生失锁或失周现象,那么载波相位测量值中的周整模糊度值N就会发生跳变,此时的平滑器就必须重置。接收机一般使用其锁定载波相位后的第一个伪距测量值p1来初始化ps的值:
ρ s , 1 = ρ 1 ( 4.85 ) \rho_{s,1}=\rho_1\quad(4.85) ρs,1=ρ1(4.85)
​ 🚤 尽管式(4.84)已被广泛地接受和应用,但是该平滑器还存在着以下两个根本性的缺点:

​ 1️⃣它假定了电离层延时保持不变,但这点并不一定总是近似正确。一方面,如果电离层延时发生了较快、较大的变化,那么由于电离层对伪距与载波相位测量值的作用相反,因而事实上有两倍的电离层延时变化量误差会进入平滑后的伪距ρs,k﹔另一方面,即使是对于缓慢变化的电离层延时而言,如果平滑器运行了很长时间却没有得到重置,那么它也会在平滑伪距ps.k中逐渐积累起-一个相当可观的电离层延时总变化量误差。
2️⃣如果平滑伪距初始值ρs,1有一个较大的偏差,那么平滑器需要一段较长时间的运行才能逐步消除此偏差。因此,该平滑器的初始值ρs,1(即伪距ρ1)应尽可能地准确。

4.5.2 周整数模糊度估算

上一小节利用了载波相位来平滑伪距,而在这小节中,我们将简单介绍一种利用伪距来粗略地确定载波相位测量值中周整模糊度N的值的方法。
比较式(4.81A)与式(4.81B),可得到以下伪距ρk与载波相位Φk的近似关系式:
ρ k = λ ( ϕ k − N ) ( 4.89 ) \rho_k=\lambda(\phi_k-N)\quad(4.89)\quad ρk=λ(ϕkN)(4.89)
从而
N ^ = [ ϕ k − ρ k λ ] ( 4.90 ) \hat{N}=\bigg[\phi_k-\frac{\rho_k}{\lambda}\bigg]\quad(4.90) N^=[ϕkλρk](4.90)
​ 显然,上述估算方法相当粗略。例如,假定伪距ρk的测量误差为5 m,而载波L1的波长约为19 cm,那么周整模糊度的估算值N的误差可达26周。我们将在第7章详细介绍多种可应用于差分GPS系统中的周整模糊度确定法。

🌵 🌛 🌾 开始难起来了 继续加油!!

🌈ok,完结~ (●ˇ∀ˇ●)点个赞 点个赞~

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~光~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值