贝叶斯网络

贝叶斯网络

🌈本篇blog 基于b站视频记录 b站视频

定义

贝叶斯网络是一个有向无圈图(Directed Acyclic Grraph, DAG),由代表变量的节点及连接
这些节点有向边构成。节点代表随机变量,节点间的有向边代表了节点间的互相关系(由父节点指向其子节点),用条件概率表达变量间依赖关系没有父节点的用先验概率进行信息表达。

无圈图 有向边不会形成一个圈

🌴那么,在这样的贝叶斯网络下怎么定义联合概率分布的?

G G G 为定义在 { X 1 , X 2 , … , X N } \{X_1,X_2,\ldots,X_N\} {X1,X2,,XN} 上的一个贝叶斯网络,其联合概率分布可以表示为各个节点的条件概率分布的乘积:

p ( X ) = ∏ i p i ( X i ∣ P a r G ( X i ) ) p(X)=\prod_{i}p_{i}(X_{i}\big|Par_{G}(X_{i})) p(X)=ipi(Xi ParG(Xi))
P a r G ( X i ) Par_G(X_i) ParG(Xi) 在G这个图上,为节点 X i X_i Xi的父节点的集合。 p i ( X i ∣ P a r G ( X i ) ) p_i(X_i|Par_G(X_i)) pi(XiParG(Xi))为节点条件概率表。

例子

对一个学生是否能够拿到推荐信的 建模
在这里插入图片描述

联合概率分布
p ( D , I , G , S , L ) = P ( D ) P ( I ) P ( G ∣ I , D ) P ( S ∣ I ) P ( L ∣ G ) \begin{aligned} &p(D,I,G,S,L) \\ &=P(D)P(I)P(G{\big|}I,D)P(S{\big|}I)P(L{\big|}G) \end{aligned} p(D,I,G,S,L)=P(D)P(I)P(G I,D)P(S I)P(L G)
比如
p ( d 0 , i 1 , g 1 , s 1 , l 1 ) = P ( d 0 ) P ( i 1 ) P ( g 1 ∣ i 1 , d 0 ) P ( s 1 ∣ i 1 ) P ( l 1 ∣ g 1 ) = 0.6 × 0.3 × 0.9 × 0.8 × 0.9 =0.11664 \begin{aligned} &p(d^0,i^1,g^1,s^1,l^1) \\ &=P(d^{0})P(i^{1})P(g^{1}\left|i^{1},d^{0}\right)P(s^{1}\left|i^{1}\right)P(l^{1}\mid g^{1}) \\ &=0.6\times0.3\times0.9\times0.8\times0.9 \\ &\text{=0.11664} \end{aligned} p(d0,i1,g1,s1,l1)=P(d0)P(i1)P(g1 i1,d0)P(s1 i1)P(l1g1)=0.6×0.3×0.9×0.8×0.9=0.11664

⭐️优点 参数少 并且直观形象

参数个数

如果用枚举法

需要 2*2 *3 * 2 * 2 -1=47 个参数

为什么-1

这里减1是因为,那一个参数可以由1-其他参数概率和得到。但其实本质上还是要48个参数

你知道了其他n-1个概率然后就知道最后一个了

如果用结构化分解:

需要 1+1+8+3+2=15个

8个参数是因为只需要两个值,总和为1,剩下那个值就知道了

🌱更一般地,假设n个二元随机变量的联合概率分布,表示该分布需要2n -1个参数。如果用贝叶斯网络建模,假设每个节点最多有k个父节点,所需要的参数最多为n*2k,一般每个变量局部依赖于少数变量。

关于条件独立

联合概率为什么可以表示为局部条件概率表的乘积?——条件独立性
p ( D , I , G , S , L ) = P ( D ) P ( I ) P ( G ∣ I , D ) P ( S ∣ I ) P ( L ∣ G ) \begin{aligned} &p(D,I,G,S,L) \\ &=P(D)P(I)P(G{\big|}I,D)P(S{\big|}I)P(L{\big|}G) \end{aligned} p(D,I,G,S,L)=P(D)P(I)P(G I,D)P(S I)P(L G)
也就是上述例子为什么成立

补充:

P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。

事件AB同时发生的概率: 等于当事件A发生了之后,再乘以在事件A发生的基础上事件B发生的概率。 或者事件B发生了之后,再乘以在事件B发生基础上事件A发生的概率。 符合朴素的认知习惯。

在这里插入图片描述

右边的式子是得到下面的等式的条件(前提),马尔可夫性质

给定C的条件下,A和B是条件独立的

是赖床的概率为1,已经赖床了迟到和熬夜就没有关系了,是不是熬夜已经不重要了

证明当前节点概率只与其前面的父节点有关系

变量独立性

如果X,Y相互独立,则满足
P ( X , Y ) = P ( X ) P ( Y ) P ( X ∣ Y ) = P ( X ) P ( Y ∣ X ) = P ( Y ) \begin{aligned} &P(X,Y)=P(X)P(Y) \\ &P(X|Y)=P(X) \\ &P(Y|X)=P(Y) \end{aligned} P(X,Y)=P(X)P(Y)P(XY)=P(X)P(YX)=P(Y)

在这里插入图片描述

条件独立

如果随机变量X,Y在给定Z的条件下独立,则满足
P ( X , Y ∣ Z ) = P ( X ∣ Z ) P ( Y ∣ Z ) P ( X ∣ Y , Z ) = P ( X ∣ Z ) P ( Y ∣ X , Z ) = P ( Y ∣ Z ) \begin{aligned} &P(X,Y|Z) =P(X\mid Z)P(Y\mid Z) \\ &P(X\mid Y,Z) =P(X\mid Z) \\ &P(Y\mid X,Z) =P(Y|Z) \end{aligned} P(X,YZ)=P(XZ)P(YZ)P(XY,Z)=P(XZ)P(YX,Z)=P(YZ)
在这里插入图片描述

概率影响的流动性

概率影响的流动性:在一定的观测条件下,变量间的取值概率是否会相互影响。

观测变量: 变量取值可观测,或变量取值已经确定

隐变量: 变量取值未知,通常根据观测变量取值,对隐变量的取值概率进行推理

C如果已经确定了,A就不会影响B

如果C未定,A和B就可能会相互影响

在这里插入图片描述

“√”——具备流动性,X,Y能够相互影响

“∈” ——w是观测变量(也就是变量取值可观测,或变量取值已经确定)

有效迹

对于贝叶斯网络中的一条迹(也就是路径) X 1 ⇌ . . . X n X_{1}\rightleftharpoons...X_{n} X1...Xn,和观测变量的子集Z, 当X和Xn的取值能够相互影响时,称路径是有效的(active)。 ——有效迹

条件独立和有迹

X 1 ⇌ . . . X n X_{1}\rightleftharpoons...X_{n} X1...Xn不是有效迹时,(X和Xn的取值无法相互影响),X和Xn相互独立

d-分离

若图G在给定Z条件下,节点X和Y之间不存在任何有效迹,则称X和Y在给定Z时是d-分离的,记为

d - sepG(X,Y |Z)

⭐️定理:若概率图G满足d-sepG(X,Y|Z),则X与Y条件独立。

贝叶斯网络中的独立性

引理:父节点已知时,该节点与其所有非后代的节点,满足d分离。

⭐️定理:父节点已知时,该节点与其所有非后代的节点(non-descendants)条件独立

在这里插入图片描述

贝叶斯网络推理的直观理解

因果推断

顺着箭头方向推断

证据推断

逆着箭头推断

交叉因果推断

双向因果推断

小结

贝叶斯网络的定义、条件概率表

概率影响的流动性、d-分离、条件独立性

贝叶斯网络的结构化分解的原理、意义

🌈ok,完结~(●’◡’●) 看到这里 点个赞叭 (●’◡’●)

  • 7
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~光~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值