<数据集>DOTA v1.0遥感航拍目标识别数据集<目标检测>

数据集格式:VOC+YOLO格式

图片数量:1869张(训练集1411,验证集458)

标注数量(xml文件个数):1869

标注数量(txt文件个数):1869

标注类别数:15

标注类别名称:['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field','roundabout', 'harbor', 'swimming-pool', 'helicopter']

序号类别名称图片数框数
1plane26710502
2large-vehicle49021356
3small-vehicle62231564
4ship43437028
5harbor4538073
6ground-track-field247469
7soccer-ball-field199479
8tennis-court3963127
9baseball-diamond175629
10swimming-pool1852176
11roundabout231578
12basketball-court146647
13storage-tank2167917
14bridge2842510
15helicopter44703

使用标注工具:labelImg

标注规则:对类别进行画水平矩形框

图片示例:

标注示例:

在使用dota 1.5数据集进行测试时遇到报错,通常是由于数据格式、路径配置或代码实现等问题导致的。以下是一些常见的原因和解决方法: 1. **数据格式不匹配**: - 确保数据集的格式与代码中读取数据的方式一致。例如,如果代码中读取的是CSV格式的数据,但数据集实际上是JSON格式,就会导致报错。 - 确认数据文件的路径是否正确。路径错误是常见的问题之一,确保代码中指定的路径与实际数据文件的位置一致。 - 使用绝对路径而不是相对路径可以减少路径配置错误的可能性。 3. **代码实现问题**: - 检查代码中是否有拼写错误或语法错误,这些错误可能导致程序无法正确读取数据。 - 确认代码中使用的库和版本是否与数据集中的要求一致。例如,某些库的新版本可能不兼容旧版本的数据格式。 4. **依赖库缺失**: - 确保所有需要的依赖库都已正确安装。可以使用`pip list`命令查看已安装的库,确保所需的库都已包含在内。 5. **内存不足**: - 如果数据集非常大,可能会导致内存不足的问题。可以考虑使用分块读取数据的方法,或者使用更高效的存储格式。 以下是一个简单的示例代码,展示如何读取CSV格式的数据集: ```python import pandas as pd # 读取CSV格式的数据集 try: data = pd.read_csv('path/to/your/dota_1.5_dataset.csv') print("数据读取成功") except FileNotFoundError: print("文件未找到,请检查路径是否正确") except pd.errors.EmptyDataError: print("文件是空的,请检查数据文件") except pd.errors.ParserError: print("解析错误,请检查数据格式") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值