目录
1,YOLOv5原理介绍
YOLOv5是目前应用广泛的目标检测算法之一,其主要结构分为两个部分:骨干网络和检测头。
骨干网络采用的是CSPDarknet53,这是一种基于Darknet框架的改进版卷积神经网络。CSPDarknet53通过使用残差结构和跨层连接来提高网络的表达能力,并且采用了空洞空间金字塔池化(ASPP)来实现多尺度的信息提取。这样设计的骨干网络具有较强的特征提取能力,可以有效地提取出图像中的目标信息。
检测头是YOLOv5的另一个关键组成部分,主要用于从骨干网络特征图中提取目标检测信息。它由三个子模块组成:SPP、PAN和YOLOv5输出层。
SPP模块:空洞空间金字塔池化模块,用于对特征图进行多尺度的池化和下采样操作,从而实现对不同大小的目标进行检测。
PAN模块:特征金字塔自上而下的路径,用于将不同层次的特征图融合在一起,并进行上采样操作,以便将低分辨率的特征图与高分辨