windows下解决onnxruntime-cpu和gpu安装报错

虚拟环境中安装onnxruntime出现以下报错:

CPU安装

报错原因:pip install onnxruntime最高只能安装到1.4.0版本,需要通过whl安装较新版本

因此我们需要进入官方网站:onnxruntime · PyPI 进行whl下载。链接:https://pypi.org/project/onnxruntime/1.8.0/#files

注意要适配python 版本和平台,我这里的是python3.8, windows

下载的是下图:

下载完成后,在该目录打开终端,进入你创建的虚拟环境,直接使用pip install  <path_to_whl_file>

进行安装即可。

GPU安装

pip安装

pip install onnxruntime-gpu==1.8.1
pip install onnxruntime-gpu

pip无法安装,报上面的错误,用下面的安装方法

通过以下方式下载和安装onnxruntime-gpu==1.8.0的Windows .whl文件:

1.Maven Repository: 在Maven仓库找到onnxruntime-gpu 1.8.0的资源 (Maven Repository)。可以访问这个链接来获取相关的下载信息。

2.(已成功安装)清华大学开源软件镜像站: 清华大学的PyPI镜像站上找到相应版本,进行下载 (PyPI Mirror Tsinghua)。

一个是linux版本和windows,python3.8,版本注意对应

下载完成后,到存放whl文件的目录,打开终端,进入需要安装的虚拟环境,通过以下命令来安装下载的.whl文件: 

pip install <path_to_whl_file>

<think>好的,我现在需要帮助用户解决导入onnxruntime时遇到的错误。首先,用户提到在导入onnxruntime报错,我需要根据提供的引用内容其他可能的原因来思考解决方案。 首先,查看用户提供的引用内容。引用[1]提到pyinstaller打包onnxruntime-gpu时找不到CUDA的问题,解决方法是创建hook文件来收集动态库。这可能意味着如果用户在使用pyinstaller打包时遇到问题,可以尝试类似的方法。但用户当前的问题是在导入时出错,可能打包无关,但需要确认用户是否在打包过程中遇到问题,还是直接运行脚本时出错。 引用[2]是关于jetson nano安装onnxruntime的问题,用户无法通过pip安装,可能需要源码编译或者寻找预编译版本。如果用户是在jetson nano这类ARM架构的设备上安装,可能遇到类似的安装问题,需要确认安装方式是否正确。 引用[3]提到ONNX Runtime的安装问题,特别是新手注意事项。可能涉及版本兼容性、CUDA版本匹配、Python环境等问题。 接下来,我需要考虑常见导致导入错误的原因: 1. **未正确安装onnxruntime包**:用户可能安装CPU版本而不是GPU版本,或者安装的版本与Python环境不兼容。需要检查安装命令是否正确,比如使用`pip install onnxruntime-gpu`而不是`onnxruntime`。 2. **CUDA/cuDNN依赖问题**:onnxruntime-gpu需要特定版本的CUDAcuDNN。如果系统中没有安装正确的版本,或者路径未正确配置,会导致导入错误。需要用户确认CUDA版本是否匹配onnxruntime-gpu的版本要求。 3. **环境变量问题**:某些情况下,需要设置环境变量如`LD_LIBRARY_PATH`来指向CUDA库的位置,尤其是在Linux系统中。 4. **Python环境冲突**:可能存在于多个Python环境或虚拟环境中,导致安装的包不在当前使用的环境中。用户需要确认是否在正确的环境中安装onnxruntime。 5. **系统架构或操作系统不兼容**:比如在jetson nano(ARM架构)上安装x86的包,导致无法运行。可能需要寻找适用于ARM的预编译包或从源码编译。 6. **缺少动态链接库**:如引用[1]所述,某些情况下动态库未被正确识别或包含,可能需要手动指定路径或使用hook文件。 现在结合用户提供的引用,可能的解决方案步骤: 1. **确认安装的包是否正确**:区分CPUGPU版本。如果用户需要GPU支持,应安装`onnxruntime-gpu`,并且确保CUDA环境已正确安装。 2. **检查CUDAcuDNN版本**:例如,onnxruntime-gpu 1.10.0需要CUDA 11.4cuDNN 8.2.4。用户需确认版本匹配。 3. **设置环境变量**:在Linux系统中,可能需要将CUDA的lib目录添加到`LD_LIBRARY_PATH`中。 4. **使用正确的Python环境**:确保安装包的环境与运行脚本的环境一致,可以使用虚拟环境工具如venv或conda。 5. **针对jetson nano等设备的安装**:参考引用[2],可能需要从特定源安装或源码编译,因为官方PyPI可能不提供ARM架构的预编译包。 6. **处理动态库问题**:如果是打包或运行时找不到库,可能需要手动收集库文件或使用hook文件,如引用[1]中的方法。 此外,用户可能遇到的错误信息如`ImportError: libcuda.so.1: cannot open shared object file: No such file or directory`,这表明系统找不到CUDA的库文件。解决方法通常是安装CUDA工具包并确保库路径正确。 总结可能的解决步骤: - 确认安装命令是否正确,安装的是GPU版本还是CPU版本。 - 检查CUDAcuDNN版本是否匹配onnxruntime-gpu的要求。 - 设置必要的环境变量,确保动态库能被找到。 - 对于特殊硬件如jetson nano,寻找合适的安装方法,可能需源码编译或使用社区提供的wheel。 - 处理Python环境冲突,使用虚拟环境隔离。</think>根据导入`onnxruntime`报错的常见原因,以下是分步解决方案: --- ### 1. **确认安装包名称及版本** - **GPU版本安装**:若需GPU加速,必须安装`onnxruntime-gpu`: ```bash pip install onnxruntime-gpu ``` - **CPU版本安装**:若无需GPU支持,安装CPU版本: ```bash pip install onnxruntime ``` - **版本兼容性**:检查[官方文档](https://onnxruntime.ai/docs/)确认CUDA/cuDNN版本要求。例如: - `onnxruntime-gpu==1.10.0` → 需要CUDA 11.4 + cuDNN 8.2.4[^3] --- ### 2. **验证CUDA环境** - **检查CUDA是否安装**: ```bash nvcc --version # 查看CUDA版本 ``` - **检查cuDNN**:确认`cudnn.h`头文件库文件存在于CUDA目录中。 - **设置环境变量**(Linux): ```bash export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` --- ### 3. **处理特殊硬件环境(如Jetson Nano)** - **ARM架构兼容问题**:官方PyPI可能无预编译包,需手动编译或使用社区提供的wheel: 1. 参考[引用2]的方法,从源码编译。 2. 或尝试安装预编译版本(如有): ```bash pip install https://github.com/.../onnxruntime_gpu-1.10.0-cp36-cp36m-linux_aarch64.whl ``` --- ### 4. **Python环境隔离** - 使用虚拟环境避免依赖冲突: ```bash python -m venv onnx_env source onnx_env/bin/activate # Linux pip install onnxruntime-gpu ``` --- ### 5. **处理动态链接库缺失(打包或运行时)** - **若使用PyInstaller打包**:按[引用1]创建hook文件`hook-onnxruntime.py`,包含: ```python from PyInstaller.utils.hooks import collect_dynamic_libs hiddenimports = ['onnxruntime', 'onnxruntime.capi', 'onnxruntime.capi.onnxruntime_pybind11_state'] binaries = collect_dynamic_libs('onnxruntime') ``` - **手动指定库路径**:将CUDA的`lib64`目录添加到系统路径。 --- ### 6. **错误示例及解决** - **错误信息**:`ImportError: libcuda.so.1: cannot open shared object file` - **原因**:CUDA驱动未安装或路径未配置。 - **解决**: 1. 安装NVIDIA驱动CUDA工具包。 2. 确认`/usr/local/cuda/lib64`已加入`LD_LIBRARY_PATH`。 --- ### 常见问题总结 | 问题类型 | 表现 | 解决方案 | |---------|------|----------| | 安装错误 | `ModuleNotFoundError` | 检查包名(`onnxruntime` vs `onnxruntime-gpu`) | | CUDA缺失 | `libcuda.so not found` | 安装CUDA驱动并配置环境变量 | | 版本冲突 | 运行时崩溃 | 确保CUDA/cuDNN与onnxruntime版本匹配[^3] | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值