YOLOv8改进线性注意力模块 ICCV2023 FLatten Transformer

79 篇文章 32 订阅 ¥49.90 ¥99.00

1,原理部分

论文地址:2308.00442 (arxiv.org)

在将 Transformer 模型应用于视觉任务时,自我注意的二次计算复杂性一直是一个持续的挑战。另一方面,线性注意力通过精心设计的映射函数近似 Softmax 操作,通过其线性复杂性提供了一种更有效的替代方案。然而,当前的线性注意力方法要么性能显著下降,要么从 Map 函数中引入额外的计算开销。在本文中,我们提出了一种新的 Focused Linear Attention 模块,以实现高效率和表现力。具体来说,我们首先从两个角度分析了导致线性注意力性能下降的因素:聚焦能力和特征多样性。为了克服这些限制,我们引入了一种简单而有效的映射函数和一种高效的秩恢复模型,以增强自我注意力的表现力,同时保持较低的计算复杂度。大量的实验表明,我们的线性注意力模块适用于各种先进的视觉 Transformers,并在多个基准测试中实现了持续改进的性能。

ICCV (International Conference on Computer Vision) 是计算机视觉领域的重要国际会议,每年都会汇聚最新的研究成果。ICCV 2023 版本中,医学图像分割作为其中一个热门研究方向,关注的是如何使用计算机视觉技术来自动分析和分割医学影像中的结构或病变,这对于疾病诊断、手术规划和治疗效果评估具有重要意义。 在ICCV 2023上,可能会探讨以下几个方面: 1. **深度学习方法**:深度学习特别是卷积神经网络(CNN)和递归神经网络(RNN)在医学图像分割中的应用会持续发展,比如U-Net、SegNet、Unet++等模型的改进和集成。 2. **弱监督和半监督学习**:减少标注数据的需求,通过利用大量未标注或部分标注的图像来提升分割性能。 3. **注意力机制**:自注意力机制可能会被用于更精准地聚焦于图像中的关键区域,提高分割的精度。 4. **医学图像的多模态融合**:结合不同类型的医学图像,如CT、MRI、PET等,以获得更全面的特征信息。 5. **迁移学习与预训练模型**:利用预训练在大规模数据集(如ImageNet)上的模型,然后在医疗领域的特定任务上微调。 6. **算法评估与挑战**:如何设计有效的评价指标和基准,以及组织针对特定医学图像分割任务的比赛。 相关问题--: 1. ICCV 2023中有哪些新型的医学图像分割算法被提出? 2. 在医学图像分割中,如何处理数据不平衡的问题? 3. 有没有在ICCV 2023上展示的成功案例,证明了医学图像分割技术的实际临床价值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值