Mediapipe+VSCode+Anaconda 实时检测手部关键点并保存视频

本文介绍了如何在Windows11系统中利用Anaconda3创建虚拟环境,安装VSCode和MediaPipe库,然后配置环境并编写Python代码进行实时手部关键点检测。通过步骤演示了从环境配置到程序运行的全过程,展示了MediaPipe在设备端机器学习推理的能力。

提示:本文仅为个人学习的记录

文章目录

前言

一、环境配置

1.Anaconda3安装

2.VSCode安装 

3.Anaconda配置虚拟环境

 4.mediapipe安装

 二、实时检测手部关键点

1.打开VSCode,新建python文件。

2.python解释器选择

3.直接运行代码即可,运行结果。

总结


前言

  MediaPipe: Google Research开源的跨平台多媒体机器学习模型应用框架作为一款跨平台框架,MediaPipe不仅可以被部署在服务器端,更可以在多个移动端(安卓和苹果iOS)和嵌入式平台(Google Coral和树莓派)中作为设备端机器学习推理(On-device MachineLearning lnference)框架。


一、环境配置

    我的环境是win11+anaconda3-2022.10+VSCode+mediapipe 0.9.0.1

1.Anaconda3安装

  (1)首先前往 Anaconda 官网:Anaconda,下载安装文件:Anaconda3-2022.10-Windows-x86_64.exe(记住保存的位置)

 (2)我的安装过程:Next--> I Agree --> All Users-->自定义安装路径-->选择添加环境变量-->Install即可安装完成。(我根据这个过程是没有任何报错的,但是有朋友反馈出错,可以参考自己添加环境变量

 

  (3)检查安装是否成功:win+r,输入cmd回车。输入conda --version,查看当前安装版本。如何输入python,返回版本信息即为安装成功。

2.VSCode安装 

  (1)去官网下载Download Visual Studio Code - Mac, Linux, Windows

   (2)VSCode我之前就安装好了,没有保存安装记录,请参考VSCode安装教程(超详细)_牛哄哄的柯南的博客-CSDN博客_vscode安装教程

3.Anaconda配置虚拟环境

  (1)打开anaconda prompt后,输入如下代码搭建基于python3.7的环境mediapipe(可自定义)。中间会出现([y]/[n]?)键入y或回车,等待安装完毕即可。

conda create -n your_env_name python=x.x

   (2)配置完mediapipe虚拟环境后,输入以下代码激活虚拟环境。

conda activate mediapipe

  (3)输入python,查看python=3.7配置是否成功。

 4.mediapipe安装

  (1)关闭anaconda prompt重新进入mediapipe环境,输入以下代码后回车开始安装。中间会出现([y]/[n]?)键入y或回车即可,等待安装完毕。

pip install mediapipe 
或
pip install mediapipe -i https://pypi.douban.com/simple

   出现以下界面即为安装成功。

 (2)在虚拟环境安装OpenCV

pip install opencv-python

pip install opencv-contrib-python(根据自己的需求,选择性安装)

   输入一些代码并查看返回信息是否正确,即检查是否安装成功。

 二、实时检测手部关键点并保存视频

1.打开VSCode,新建python文件。

代码如下(示例):

import sys
import cv2
import mediapipe as mp

mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands

#打开本地摄像头,实时检测,可自行更换为加载本地视频
cap = cv2.VideoCapture(0)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))  #获取视频的宽度
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))  #获取视频的高度
fps = cap.get(cv2.CAP_PROP_FPS) #获取视频的帧率
fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
writer = cv2.VideoWriter("D:\\mediapipe\\video_result.mp4v", fourcc, fps, (width, height))

with mp_hands.Hands(
        min_detection_confidence=0.9,
        min_tracking_confidence=0.9) as hands:
    while cap.isOpened():
        success, image = cap.read()
        if not success:
            print("Ignoring empty camera frame.")
            continue


        image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
        image.flags.writeable = False
        results = hands.process(image)

        # 在图像上绘制手部注释
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        if results.multi_hand_landmarks:
            for hand_landmarks in results.multi_hand_landmarks:
                mp_drawing.draw_landmarks(
                    image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
        cv2.imshow('MediaPipe Hands', image)
        key = cv2.waitKey(24)
        writer.write(image)  #视频保存
        # 按Q退出
        if cv2.waitKey(1) == ord("Q"):
            break
cap.release()

2.python解释器选择

3.直接运行代码即可,运行结果。


总结

  以上就是mediapipe的学习记录,本文仅仅简单介绍了mediapipe的使用,而mediapipe能够解决许多视觉任务大家可自行探索。

### 配置 VSCode 使用 Anaconda #### 安装 Anaconda 设置环境变量 为了使 VSCode 能够识别使用 AnacondaPython 解释器及相关工具,需先正确安装 Anaconda将其路径添加到系统的 `PATH` 环境变量中。具体来说,如果 Anaconda 安装在 D 盘,则应向 PATH 变量追加以下目录[^1]: - `D:\anaconda3` - `D:\anaconda3\Library\bin` - `D:\anaconda3\Library\mingw-w64` - `D:\anaconda3\Library\usr\bin` - `D:\anaconda3\Scripts` 对于不同磁盘分区上的安装位置,请相应调整上述路径中的驱动器字母。 #### 创建特定的 Conda 环境 通过 Anaconda Navigator 或命令行创建专门用于项目的 conda 环境可以更好地管理依赖关系。例如,要建立名为 tf 的 TensorFlow 开发环境,可以在 Anaconda Navigator 中选择 Environments -> Create 来完成操作;也可以直接运行如下命令来创建基于指定版本 Python 和 TensorFlow 的新环境[^3]: ```bash conda create --name tf python=3.5 tensorflow ``` 这一步骤有助于解决因环境冲突而导致的一些软件包无法正常下载的问题。 #### 在 VSCode 中激活 Conda 环境 一旦有了合适的 conda 环境,就可以让 VSCode 进入该环境中工作了。启动 VSCode 后按 Ctrl+Shift+P 打开命令面板,输入 "Python Select Interpreter" 选项以切换当前使用的 Python 版本至刚才创建的 conda 环境下的解释器。通常情况下,VSCode 应自动检测到所有可用的 conda 环境列表供用户挑选。 另外,还可以手动编辑 `.vscode/settings.json` 文件,指明具体的 Python 解释器路径,比如: ```json { "python.pythonPath": "X:\\Anaconda\\envs\\tf\\python.exe" } ``` 这里的 X 表示实际存储 anaconda 的磁盘符,而 `\envs\tf\` 则指向之前所建的 conda 环境名称。 #### 测试配置有效性 最后,可以通过编写简单的测试脚本来验证整个流程是否成功。尝试导入一些仅存在于目标 conda 环境内的库(如 TensorFlow),观察是否有任何错误提示出现。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值