Mediapipe+VSCode+Anaconda 实时检测手部关键点并保存视频

提示:本文仅为个人学习的记录

文章目录

前言

一、环境配置

1.Anaconda3安装

2.VSCode安装 

3.Anaconda配置虚拟环境

 4.mediapipe安装

 二、实时检测手部关键点

1.打开VSCode,新建python文件。

2.python解释器选择

3.直接运行代码即可,运行结果。

总结


前言

  MediaPipe: Google Research开源的跨平台多媒体机器学习模型应用框架作为一款跨平台框架,MediaPipe不仅可以被部署在服务器端,更可以在多个移动端(安卓和苹果iOS)和嵌入式平台(Google Coral和树莓派)中作为设备端机器学习推理(On-device MachineLearning lnference)框架。


一、环境配置

    我的环境是win11+anaconda3-2022.10+VSCode+mediapipe 0.9.0.1

1.Anaconda3安装

  (1)首先前往 Anaconda 官网:Anaconda,下载安装文件:Anaconda3-2022.10-Windows-x86_64.exe(记住保存的位置)

 (2)我的安装过程:Next--> I Agree --> All Users-->自定义安装路径-->选择添加环境变量-->Install即可安装完成。(我根据这个过程是没有任何报错的,但是有朋友反馈出错,可以参考自己添加环境变量

 

  (3)检查安装是否成功:win+r,输入cmd回车。输入conda --version,查看当前安装版本。如何输入python,返回版本信息即为安装成功。

2.VSCode安装 

  (1)去官网下载Download Visual Studio Code - Mac, Linux, Windows

   (2)VSCode我之前就安装好了,没有保存安装记录,请参考VSCode安装教程(超详细)_牛哄哄的柯南的博客-CSDN博客_vscode安装教程

3.Anaconda配置虚拟环境

  (1)打开anaconda prompt后,输入如下代码搭建基于python3.7的环境mediapipe(可自定义)。中间会出现([y]/[n]?)键入y或回车,等待安装完毕即可。

conda create -n your_env_name python=x.x

   (2)配置完mediapipe虚拟环境后,输入以下代码激活虚拟环境。

conda activate mediapipe

  (3)输入python,查看python=3.7配置是否成功。

 4.mediapipe安装

  (1)关闭anaconda prompt重新进入mediapipe环境,输入以下代码后回车开始安装。中间会出现([y]/[n]?)键入y或回车即可,等待安装完毕。

pip install mediapipe 
或
pip install mediapipe -i https://pypi.douban.com/simple

   出现以下界面即为安装成功。

 (2)在虚拟环境安装OpenCV

pip install opencv-python

pip install opencv-contrib-python(根据自己的需求,选择性安装)

   输入一些代码并查看返回信息是否正确,即检查是否安装成功。

 二、实时检测手部关键点并保存视频

1.打开VSCode,新建python文件。

代码如下(示例):

import sys
import cv2
import mediapipe as mp

mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands

#打开本地摄像头,实时检测,可自行更换为加载本地视频
cap = cv2.VideoCapture(0)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))  #获取视频的宽度
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))  #获取视频的高度
fps = cap.get(cv2.CAP_PROP_FPS) #获取视频的帧率
fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
writer = cv2.VideoWriter("D:\\mediapipe\\video_result.mp4v", fourcc, fps, (width, height))

with mp_hands.Hands(
        min_detection_confidence=0.9,
        min_tracking_confidence=0.9) as hands:
    while cap.isOpened():
        success, image = cap.read()
        if not success:
            print("Ignoring empty camera frame.")
            continue


        image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
        image.flags.writeable = False
        results = hands.process(image)

        # 在图像上绘制手部注释
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        if results.multi_hand_landmarks:
            for hand_landmarks in results.multi_hand_landmarks:
                mp_drawing.draw_landmarks(
                    image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
        cv2.imshow('MediaPipe Hands', image)
        key = cv2.waitKey(24)
        writer.write(image)  #视频保存
        # 按Q退出
        if cv2.waitKey(1) == ord("Q"):
            break
cap.release()

2.python解释器选择

3.直接运行代码即可,运行结果。


总结

  以上就是mediapipe的学习记录,本文仅仅简单介绍了mediapipe的使用,而mediapipe能够解决许多视觉任务大家可自行探索。

### 如何在VSCode中安装和配置Anaconda #### 安装Anaconda 为了确保能够顺利地在Visual Studio Code (VSCode) 中使用Anaconda,首先要确认Anaconda已经正确安装。可以从Anaconda官网下载最新版的Anaconda按照官方指南完成其安装过程[^1]。 #### 安装VSCode及其Python扩展 同样重要的是要验证VSCode也已成功安装。对于希望集成Anaconda使用的开发者来说,在VSCode里安装由Microsoft提供的Python插件是非常必要的。这一步骤可以通过打开VSCode, 点击左侧边栏上的扩展图标(或通过快捷键`Ctrl + Shift + X`),接着在搜索框内输入“Python”,从中挑选微软发布的Python扩展来实现安装操作[^2]。 #### 配置VSCode以支持Anaconda环境 一旦上述软件都准备就绪,则需进一步设置让VSCode识别到Anaconda所创建的各种工作空间: - **选择解释器**: 使用命令面板(`Ctrl+Shift+P`)调用 `Python: Select Interpreter` 命令,从列表选项中选取合适的Conda Environment作为当前项目的默认Python解析器。 - **激活特定环境**: 如果项目依赖于某个特殊的Anaconda环境,可以在终端窗口启动时手动执行如下指令来进行切换: ```bash conda activate myenvname ``` - **自动检测路径**: 对于某些情况下的Windows系统用户而言,可能还需要调整系统的PATH变量以便使VSCode能更方便地定位至Anaconda的相关文件夹位置。通常情况下,如果遵循标准流程完成了Anaconda的安装,此步骤可以省略;但如果遇到问题,可参照指定路径添加方法[^3]。 ```python import sys print(sys.executable) ``` 这段简单的Python脚本可以帮助确认目前选用了解析器的位置是否符合预期。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值