论文学习
文章平均质量分 93
记录论文学习
苦瓜汤补钙
做一个积极向上的仰泳鲈鱼。
展开
-
论文阅读:3D Gaussian Splatting for Real-Time Radiance Field Rendering
本工作首先基于SFM的点云设计了能快速精确表达场景的3D高斯函数,并以此开发了可由CUDA加速的渲染算法,实现了辐射场的实时渲染。本论文的核心在于3D高斯函数的场景表达方式以及快速渲染的方法。该方法整体如下图所示:首先从SFM得到的稀疏点云构建三维高斯函数,在训练过程中通过可微的快速渲染器对3D高斯函数的属性进行优化,并交替进行自适应密度控制。提出一个实时且能够高质量渲染场景的方法,通过结合离散和连续表示方法的优势,不仅克服了传统方法在噪声和渲染质量方面的限制,而且极大地提高了渲染速度。原创 2024-09-11 16:24:48 · 1346 阅读 · 0 评论 -
论文阅读:RGBD GS-ICP SLAM
文章提出了RGBD GS-ICP-SLAM,这是一种利用三维高斯表示进行高保真度空间表示的密集表示SLAM系统。作者证明了利用单一三维高斯地图进行跟踪和建图的G-ICP和3DGS的融合可以产生相互的好处。跟踪和建图过程之间的高斯交换与尺度对齐最小化了冗余计算并构建了一个高效的系统。此外,动态关键帧选择方法提高了跟踪和建图性能。通过广泛的实验,所提出的方法在空间表示、相机位姿估计和总系统速度方面呈现出最先进的性能。原创 2024-09-11 16:05:48 · 1357 阅读 · 0 评论 -
论文阅读:Deep_Generic_Dynamic_Object_Detection_Based_on_Dynamic_Grid_Maps
相机参考图像显示在顶部,基于深度学习的旋转边界框目标检测结果覆盖在中间的动态网格上,经典的DBSCAN目标检测在最后一行。该文章提出了一种基于动态网格图(Dynamic Grid Maps)的深度通用动态物体检测方法,旨在提高复杂环境中动态物体检测的准确性和效率。本文提出的方法旨在解决这些挑战,提供一种更鲁棒和高效的动态物体检测技术,适用于自动驾驶、机器人导航等领域。本文提出的基于动态网格图的深度学习动态物体检测方法,在多种复杂环境下均表现出色,有效提高了动态物体检测的准确性和鲁棒性。原创 2024-07-25 15:11:29 · 1055 阅读 · 0 评论 -
论文阅读:面向自动驾驶场景的多目标点云检测算法
论文地址:面向自动驾驶场景的多目标点云检测算法点云在自动驾驶系统中的三维目标检测是关键技术之一。目前主流的基于体素的无锚框检测算法通常采用复杂的二阶段修正模块,虽然在算法性能上有所提升,但往往伴随着较大的延迟。单阶段无锚框点云检测算法简化了检测流程,但其性能难以满足自动驾驶场景的高要求。本文基于无锚框检测算法CenterPoint,提出了一种适用于自动驾驶场景的单阶段无锚框点云目标检测算法。技术创新自动驾驶系统中,基于点云的三维目标检测是至关重要的技术之一。组成部分:优化和改进:扩展功能:这些优化和改进措施原创 2024-07-25 14:45:56 · 862 阅读 · 0 评论 -
论文阅读:Neural Scene Flow Prior
在迭代0时,给定神经先验的随机初始化,场景流是随机的。本文展示了基于多层感知器(MLP)架构的场景流先验可以达到竞争性的结果,并且能够估计点云序列中的稠密长期对应关系。使用我们的神经先验进行积累,很好地产生了更密集的点云,同时照顾到场景中的所有动态对象。本文提出了一种基于神经网络的场景流先验方法,通过使用神经网络结构本身作为隐式正则化器,实现了在没有离线数据集的情况下对场景流的正则化。该方法在实际应用中表现出色,具有较少的参数和较低的计算复杂度,同时在点云序列中实现了更好的场景流插值。原创 2024-06-05 11:46:19 · 1061 阅读 · 1 评论 -
论文阅读:Fast Neural Scene Flow
还对两个数据集进行了预处理,对于Argoverse数据集,使用了官方提供的扩展版本进行了预处理,对于Waymo Open数据集,发现该数据集中的点云有一部分是无效的,会影响后续的计算和可视化,因此作者对该数据集进行了清洗,去除了无效的点云。相反,它利用神经网络的结构来隐式正则化流估计,并采用可以轻松扩展到大规模分布外(OOD)场景的运行时优化,这对于当前的基于学习的方法是一个挑战。即使假设网格/体素的每个轴是可分离的,并且每轴的距离是预计算的,内存消耗仍然非常大,无法在单个 GPU 上处理。原创 2024-06-05 11:11:56 · 1323 阅读 · 0 评论 -
论文阅读:Correcting Motion Distortion for LIDAR HD-Map Localization
现在考虑三 种情况,一种情况是传感器在扫描期间保持静止(以 标记为 a 的姿势开始和结束),第二种情况其中传感器进行纯平移(从 a 开始并在 b 结束), 第三种情况是传感器同时进行平移和旋转(从 a 开 始并在 c 结束)。通过在现实世界数据上进行实验,本文证明了VICET比传统的NDT和ICP提高了精度,降低了地图匹配的平移偏差(从6.9cm降低到0.27cm,降低了一个数量级),同时减少了一个sigma变化(从5.4cm到2.6cm)。然后,利用扩展的NDT算法,同时优化刚性变换和运动失真参数。原创 2024-05-29 16:52:03 · 1178 阅读 · 1 评论 -
论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法
YOLOv5原始主干网络采用3×3的卷积模块,对非密集场景下的目标识别任务具有出色的能力,但在密集场景和被识别物有遮挡的情况下很难提取到有效特征信息,为此论文研究对传统的 RepVGG 结构进行修改,引入更加友好的量化感知模块 QARepNeXt。综上所述,通过在主干网络、特征融合和损失函数等方面的改进,优化后的 YOLOv5s 算法模型有效提升了密集动态目标检测的精度和可靠性,适用于密集动态目标检测及其相关领域。目的:提出一种基于 YOLOv5改进的检测算法,解决密集动态目标检测精度低及易漏检的问题。原创 2024-05-15 18:53:03 · 835 阅读 · 1 评论 -
论文阅读:SOLOv2: Dynamic, Faster and Stronger
SOLO v2遵循了SOLO的优雅、简单的设计,并且针对mask的检测效果和运行效率做了两个改进:(1)mask learning:能够更好地学习到mask(2)mask NMS:提出了matrix nms,大大减少了前向推理的时间。重点看一下Mask Branch,每个正样本(有类别输出的网格)都会输出对应类别的instance mask,这里的通道channel和网格的对应关系是:第k个通道负责预测出第(i,j)个网格的instance mask,k = i*S+j。这就对应了网络的两个分支。原创 2024-02-27 19:59:26 · 1234 阅读 · 0 评论 -
论文阅读:LiDAR-based curb detection for ground truth annotation in automated driving validation
路沿检测在自动驾驶中是环境感知的关键,因为它通常界定了可驾驶区域和不可驾驶区域。标注的数据对于开发和验证自动驾驶功能是必不可少的。然而,带有标注的点云路沿的公共数据集数量很有限。本文提出了一种从激光雷达传感器捕获的一系列点云中检测3D路沿的方法,主要包括两个步骤。首先,方法使用分割深度神经网络在每个扫描中检测路沿。然后一个序列级处理步骤利用车辆的里程数据在重建的点云中估计3D路沿。从这些路沿的3D点云中,按照ASAM OpenLABEL标准获取结构化的折线。原创 2024-02-16 08:00:00 · 1152 阅读 · 1 评论 -
论文阅读:Lidar Annotation Is All You Need
论文重点在探讨利用点云的地面分割任务作为标注,直接训练Camera的精细2D分割。在以往的地面分割任务中,利用Lidar来做地面分割是目前采用激光雷达方案进行自动驾驶的常见手段。来自Evocargo LCC的学者认为在2D上直接做分割的标注(尤其是高精度的分割标注)是比较耗时耗力的,这会带来很多额外的成本,不利于大规模自动驾驶量产。作者提出使用3D的地面粗分割结果(例如patchwork++这种无需训练的模型)作为reference。解决了激光雷达点云的稀疏地面实况蒙版的问题。原创 2023-12-11 16:08:20 · 368 阅读 · 0 评论 -
论文阅读:MotionNet基于鸟瞰图的自动驾驶联合感知和运动预测
MotionNet:基于鸟瞰图的自动驾驶联合感知和运动预测。本文主要介绍了一种名为MotionNet的模型,通过将LiDAR扫描转换成鸟瞰图,实现了对自动驾驶中物体的感知和运动预测。该模型采用了一种新颖的空间时间金字塔网络,可逐层提取深度的空间和时间特征。为了保证预测的平滑性,该模型还采用了新颖的空间和时间一致性损失。实验表明,MotionNet的性能优于目前最先进的方法,可以为自动驾驶提供补充信息。原创 2024-02-17 11:09:31 · 1730 阅读 · 4 评论 -
论文阅读:Offboard 3D Object Detection from Point Cloud Sequences
该方法利用点云序列中不同帧所捕获的物体的互补视角信息,通过多帧物体检测和新颖的物体中心优化模型来利用时间点云。然后,提出了新的深度网络模型来处理这样的4D目标跟踪数据,并输出时间已知且高质量的目标box。关键是使用点云序列数据来进行物体检测,并设计了一个新的离线物体检测管道,利用多帧物体检测和新的物体中心检测模型来提高检测准确性。为每个对象提取对象跟踪数据(其每帧的点云及其 3D 边界框),然后通过以对象为中心的自动标记(静态和动态轨迹的分而治之)生成最终的“自动标签”,即细化的 3D 边界框。原创 2023-10-15 16:37:51 · 2003 阅读 · 0 评论 -
论文阅读:CTRL: Surpassing Human Performance in Offline LiDAR based 3D Object Detection
这篇论文提出了一种新的离线3D目标检测系统,该系统采用了一种跟踪中心的设计,并具有一个基于跟踪的检测模块和一个跟踪中心的学习模块。此外,该方法还提出了一种新的跟踪中心的标注方法,能够有效地解决目标检测中的标注歧义问题。命名为名称,即使检测到的物体在某些时间步骤中没有足够的点云数据,也可以利用该物体的时间序列信息来推断其位置和姿态,从而提高目标检测的准确性。大量的实验表明,该方法在竞争激烈的Waymo开放数据集中,在没有模型集成的情况下,超过了人类水平的注释精度和之前最先进的方法。CTRL的整体架构。原创 2023-10-15 15:56:53 · 678 阅读 · 0 评论 -
论文阅读:CenterFormer: Center-based Transformer for 3D Object Detection
设计了一种通过交叉注意融合特征的方法,能进一步聚合多帧的特征。该网络由四个部分组成:将原始点云编码为 BEV 特征表示的体素特征编码器、多尺度中心提议网络 (CPN)、基于中心的Transformer解码器和用于预测边界框的回归头。为了进一步探索变压器的能力,还提出了一种多帧设计,通过交叉注意融合来自不同帧的特征。由于具有多尺度特征,因此能够在提议的中心周围捕获广泛的特征。限制在每个尺度的中心位置附近的一个 3×3 小窗口,如上图 所示。其中p表示中心建议,这里的Ωj是中心周围的窗口,s是尺度的索引。原创 2023-10-15 14:44:28 · 1834 阅读 · 2 评论 -
论文阅读:Segment Any Point Cloud Sequences by Distilling Vision Foundation Models
视觉基础模型 (VFMs) 的最新进展为通用且高效的视觉感知开辟了新的可能性。在这项工作中,论文中介绍了 一个新颖的框架Seal,利用 VFM 来分割不同的汽车点云序列。在11个不同的点云数据集上进行的大量实验证明了Seal的有效性和优越性。Seal在线性探测后在nuScenes上实现了显著的45.0% mIoU,超过了随机初始化36.9% mIoU,比现有技术高出6.1% mIoU。此外,Seal 在所有 11 个测试点云数据集上的 20 个不同的小样本微调任务中显示出比现有方法显着的性能提升。原创 2023-10-15 13:34:28 · 1111 阅读 · 0 评论 -
论文阅读:Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data
自动驾驶汽车的图像到雷达自我监督蒸馏。在自动驾驶中两项重要任务:分割或检测稀疏激光雷达点云目标(使车辆在3D环境中安全运行)。在3D语义分割或目标检测中,性能最好的方法依赖于大量带标注数据(注释3D激光雷达数据既复杂又昂贵)。论文提出一种自监督预训练方法,适用于自动驾驶数据的3D感知模型。即,利用自动驾驶设备中同步和校准的图像和激光雷达传感器的可用性,将自监督的预训练图像表征蒸馏到3D模型中(不需要任何点云或图像标注)。方法关键是使用超像素(superpixel)原创 2023-10-14 20:22:58 · 917 阅读 · 0 评论 -
学习笔记:Center-based 3D Object Detection and Tracking
本篇CenterPoint是基本沿用了CenterNet的方法,基本上是在CenterNet网络上做一些扩展工作。主干网络选用的是Pointpillars和VoxelNet的方法。本文仅仅简单翻译了CenterPoint这篇论文,而CenterPoint的实际使用还有待探索。翻译 2023-05-30 15:03:35 · 772 阅读 · 0 评论