相机标定:使用matlab标定D435i相机///含调用左右相机代码

相比能看到这里的家人们肯定都会遇到,结构光关闭不了的问题!!!(也就是那个白点点。)

实际上,直接遮住中间的相机就ok啦!

就这!

如果感觉有用,麻烦点个赞哦!!!!

附送一段代码:调用左右相机的!!!

import pyrealsense2 as rs
import numpy as np
import cv2
import time

counter = 0
# 若要保存到其他文件夹,修改此路径
folder = 'left/'


# time.time()

def shot(pos, frame):
        global counter
        path = folder + pos + "_" + str(counter) + ".png"
        cv2.imwrite(path, frame)
        print("snapshot saved into: " + path)


pipeline = rs.pipeline()
config = rs.config()
# 配置深度和颜色流
# 10、15或者30可选,20或者25会报错,其他帧率未尝试
# 配置颜色相机
config.enable_stream(rs.stream.color, 848, 480, rs.format.bgr8, 15)
# 配置红外相机
config.enable_stream(rs.stream.infrared, 1, 848, 480, rs.format.y8, 15)
config.enable_stream(rs.stream.infrared, 2, 848, 480, rs.format.y8, 15)
# 配置深度图像
print(1)
print(2)

config.enable_stream(rs.stream.depth, 848, 480, rs.format.z16, 15)
# Start streaming
profile = pipeline.start(config)
config.disable_stream(rs.stream.infrared)

# 创建对齐对象, rs.align 允许我们将深度帧与其他帧对齐, "align_to" 是计划对其深度帧的流类型
align_to = rs.stream.color
align = rs.align(align_to)

try:
        while True:
                frames = pipeline.wait_for_frames()
                # 将深度框与颜色框对齐
                aligned_frames = align.process(frames)
                # 获取对齐帧

                color_frame = aligned_frames.get_color_frame()
                if not color_frame:
                        continue
                color_frame = np.asanyarray(color_frame.get_data())
                # cv2.imshow('2 color', color_frame)

                # left frames

                left_frame = frames.get_infrared_frame(1)
                if not left_frame:
                        continue
                left_frame = np.asanyarray(left_frame.get_data())
                cv2.imshow('3 left_frame', left_frame)

                # right frames
                right_frame = frames.get_infrared_frame(2)
                if not right_frame:
                        continue
                right_frame = np.asanyarray(right_frame.get_data())
                cv2.imshow('4 right_frame', right_frame)

                c = cv2.waitKey(1)

                # 如果按下ESC则关闭窗口(ESC的ascii码为27),同时跳出循环
                if c == 27:
                        cv2.destroyAllWindows()
                        break

                if c == ord('t'):
                        # 默认保存五张图片,如果不需要保存某图像把对应那行代码注释掉即可
                        shot('left_shot', left_frame)
                        shot('right_shot', right_frame)
                        counter += 1

finally:
        # Stop streaming
        pipeline.stop()

具体的使用matlab的标注办法如此链接:哈哈哈哈

这个大佬讲的巨好!!!!

### D435i 深度相机校准方法 对于D435i深度相机的校准,可以采用MATLAB中的`Camera Calibrator`应用程序来完成这一过程。该工具能够帮助改善图像质量并通过纠正镜头失真来测量物体的实际尺寸[^1]。 #### 准备工作 为了准备标定流程,需打印一张棋盘格图案并将其固定于平坦表面作为标定点。接着,从多个角度拍摄这些标定点的照片以便后续处理[^2]。 #### 数据采集 利用D435i设备获取一系列包棋盘格的不同视角图片集。确保每张图覆盖整个视场范围,并且有足够的重叠区域用于特征匹配。 #### 特征点检测 加载所收集到的图像至MATLAB环境内,调用内置函数自动识别各帧内的角点位置。此操作可通过如下命令实现: ```matlab % 加载图像文件夹路径 imageFolder = 'path_to_images'; images = imageDatastore(imageFolder); % 创建棋盘格对象参数设定 boardSize = [8 6]; % 定义内部交差点数目 squareSize = 0.029; % 单位:米 (m) % 初始化棋盘探测器 detector = chessboardDetector(boardSize, squareSize); ``` #### 参数估计 基于提取出来的角点坐标计算内外部参数以及可能存在的径向失真效应。具体来说就是求解相机矩阵、旋转和平移矢量等未知数。这一步骤涉及到最小化重投影误差的过程,从而获得最优解。 ```matlab % 进行初步内在/外在参数拟合 params = estimateCameraParameters(detectorPoints, worldPoints); % 获取初始猜测值 intrinsics = params.Intrinsics; extrinsics = params.Extrinsics; % 使用非线性优化进一步改进结果 refinedParams = refineEstimates(intrinsics, extrinsics, detectorPoints, ... worldPoints, 'RadialDistortion', true); ``` #### 结果验证与保存 最后要评估所得模型的有效性和准确性。可以通过可视化方式展示矫正前后对比效果;同时也可以导出最终确定下来的各项系数供以后使用。 ```matlab % 显示未经修正和已修正图像样本之间的差异 figure; imshowpair(undistortImage(images.readimage(1), refinedParams), ... images.readimage(1), 'montage'); % 将校正后的参数存储起来 save('cameraCalibration.mat', 'refinedParams'); ``` 上述代码片段展示了如何借助MATLAB平台执行完整的D435i摄像头校准程序。值得注意的是,在实际应用场景下还需考虑更多细节因素以确保最佳性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值