Pandas过滤,排序,和重构

本文介绍了Pandas库在数据处理中的基本操作,包括如何筛选特定年份的数据、根据数值条件过滤、按列名正则表达式选择行、按国家名称筛选,以及如何对数据进行排序。此外,还展示了如何使用pivot函数进行数据重构,将数据转化为更便于分析的格式。这些技巧对于数据预处理和分析至关重要。
摘要由CSDN通过智能技术生成

Pandas过滤,排序,和重构

过滤

筛选1961,2000,2015年的数据

dataset.filter(items=['1961', '2000', '2015'])

在这里插入图片描述
筛选出2000年,大于500的数值

dataset[(dataset['2000'] > 500)][['2000']]

在这里插入图片描述
检索始于2的全部列

dataset.filter(regex='^2',axis=1).head()

在这里插入图片描述
检索始于A的所有行

dataset.filter(regex='^A',axis=0).head()

在这里插入图片描述
检索包含land的所有国家

dataset.filter(like='land', axis=0).head()

在这里插入图片描述

排序

根据1961年中的数值进行排序

dataset.sort_values(by=['1961'])[['1961']].head()

在这里插入图片描述
2015列年的数据,降序排序

dataset.sort_values(by=['2015'],ascending=False)[['2015']].head()

重构

dataset_2015 = dataset[["Country Code",'2015']]
dataset_2015['temp'] = '2015'

在这里插入图片描述

dataset_2015.pivot(index=['temp'], columns='Country Code',values='2015')

在这里插入图片描述
pivo函数的参数
index:指定一列做为生成DataFrame对象的索引,如果为空则默认为原来的索引。
columns:指定一列的值作为列名,必须传值。
values:指定一列作为生成DataFrame对象的值。可以为空。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值