四、利用GEE下载全国从1990年开始至2020年,每5年的CLCD产品,最后再补充2022年的数据产品(共32年)。
(1)CLCD产品介绍:CLCD(China Land Cover Dataset)数据集由武汉大学黄昕老师公布,黄昕老师基于Google Earth Engine上335,709景Landsat数据,制作中国年度土地覆盖数据集(annual China Land Cover Dataset, CLCD),包含1985+1990—2022中国逐年土地覆盖信息。为此,黄昕老师基于GEE上所有可获得的Landsat数据,构建时空特征,结合随机森林分类器得到分类结果,并提出一种包含时空滤波和逻辑推理的后处理方法进一步提高CLCD的时空一致性。最后,基于5,463个目视解译样本,CLCD的总体准确率达80%。
(2)代码:
var srcFolder = 'projects/lulc-datase/assets/LULC_HuangXin/';
var imgList = ee.List([]);
for(var year = 1990; year<=2022;year++){
var tmpImg = ee.Image(srcFolder+'CLCD_v01_'+year);
imgList = imgList.add(tmpImg);
}
var imgList = ee.ImageCollection.fromImages(imgList);
print("imgList",imgList);
var roi = table
var roi_geometry = roi.geometry();
// 导出从1990年开始每5年的影像
for (var year = 1990; year <= 2020; year += 5) {
var img = ee.Image(srcFolder + 'CLCD_v01_' + year);
// 导出影像为TIF,分辨率1500米
Export.image.toDrive({
image: img.clip(roi_geometry), // 将影像裁剪到ROI区域
description: 'CLCD_' + year, // 任务描述
folder: 'CLCD_Neimeng', // 导出到Google Drive中的文件夹名称
fileNamePrefix: 'CLCD_' + year, // 文件名前缀
region: roi_geometry, // 导出区域
scale: 1500, // 导出分辨率,单位:米
crs: 'EPSG:4326', // 坐标系
maxPixels: 1e13 // 最大像素数量
});
}
// 单独导出2022年的影像
var img_2022 = ee.Image(srcFolder + 'CLCD_v01_2022');
Export.image.toDrive({
image: img_2022.clip(roi_geometry), // 将影像裁剪到ROI区域
description: 'CLCD_2022', // 任务描述
folder: 'CLCD_Neimeng', // 导出到Google Drive中的文件夹名称
fileNamePrefix: 'CLCD_2022', // 文件名前缀
region: roi_geometry, // 导出区域
scale: 1500, // 导出分辨率,单位:米
crs: 'EPSG:4326', // 坐标系
maxPixels: 1e13 // 最大像素数量
});
(3)致谢:感谢CSDN博主“GEEStudyRoom”的代码贡献,本代码基于此改写。主页:https://blog.csdn.net/adhuahd/article/details/135273554。
(4)免责声明:
所提供的数据仅供研究和学术用途。数据的所有权归属权利人,任何使用者不得将其用于商业目的或其他非学术用途。使用者应自行承担使用本数据集的所有风险,数据提供者不对因使用数据集而产生的任何直接或间接损失承担责任。尽管已采取措施确保数据的准确性和完整性,但数据提供者不对数据的准确性、完整性、及时性或适用性作出任何保证。
参考文献:
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.