Kaggle使用时的小细节

Kaggle

Kaggle是一个提供免费CPU,GPU,TPU的编程(主要是机器学习,其他也行),学习,竞赛的网站。(若有colab,可无视此篇)
对于只为了编程的作用而言(如果你的电脑GPU足够强劲,可以不用过多关心了,数据分析Jupyter,常规编程Pycharm,Vim,Sublime等等这些足够了)
Kaggle的注册,验证账号等等,网上文章众多,在此就不赘述。。。

文件

常用的,帮助显示你的文件夹内容的一些命令
import os
print(os.listdir('./')) # 显示当前运行的文件夹内容
print(os.listdir('/kaggle')) #显示kaggle目录下所有文件
print(os.listdir('/'))   #显示文件根目录

1.文件压缩包的下载和解压

该压缩包与Kaggle官网无关,只是我在机器学习使用的一些数据

!wget --no-check-certificate \
http://storage.googleapis.com/laurencemoroney-blog.appspot.com/validation-horse-or-human.zip \
-O /tmp/validation-horse-or-human.zip

!wget --no-check-certificate \
http://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip \
-O /tmp/horse-or-human.zip

import zipfile
train = zipfile.ZipFile("/tmp/horse-or-human.zip")
train.extractall(path="/tmp/horse-or-human")
validation = zipfile.ZipFile("/tmp/validation-horse-or-human.zip")
validation.extractall(path="/tmp/validation-horse-or-human")

2.文件目录结构

kaggle的详细目录结果如图所示,注意并非只有working和input目录,并且kaggle也不是根目录,只是一个子目录
在这里插入图片描述

3.Kaggle目录中的文件下载到本地

在本人多次尝试下(但也可能不一定对[doge]),应该只有把你要下载的文件夹,放到/kaggle/working/这个目录下,才能正确使用一下代码

new_movies.to_csv("/kaggel/working/Douban_movie.csv") #保存文件
import os 
os.chdir('/kaggle/working') #将cell的文件夹切换到下载的文件所在文件夹
from IPython.display import FileLink
FileLink('Douban_movie.csv')

执行完后,会出现链接,如下所示的右下角蓝体字,点击后就会下载
在这里插入图片描述

注意

在你每次更换Accelerator后,所有下载文件,创建的目录,原来缓存的数据,结果都会被清空。
在你重启后也会清空。

语法补全

Tab键补全

%config Completer.use_jedi = False

比原来的自身的补全,强一些(本人感觉不太明显[doge]),但还是比不上Kite

个人觉得Kaggle还是不错,免费处理器,足够的文件储存空间,而且对于国内用户还是比较友好的
另外也推荐colab,只是国内一般不好访问,而且访问到了也容易断

以上均为个人见解,求轻喷

<think>好的,用户想在Kaggle上找到使用ConvLSTM模型进行InSAR预测的教程或示例代码。首先,我需要确认ConvLSTM在InSAR预测中的应用是否常见。InSAR通常涉及处理序的雷达干涉图像,用于地表形变监测,因此ConvLSTM结合了卷积和LSTM,适合处理空序列数据,这可能是一个合理的选择。 接下来,用户提到Kaggle平台,所以需要检查Kaggle是否有相关的数据集或代码示例。不过,InSAR数据相对专业,可能在Kaggle上资源不多。可能需要建议用户寻找类似的间序列预测或卫星图像处理的示例,然后进行调整。 用户需要教程或代码示例,我应该考虑推荐Kaggle上相关的比赛或数据集,比如可能与间序列预测、卫星图像处理相关的。例如,Earthquakes比赛或者LANDSAT数据相关的项目可能有用。如果没有直接的InSAR示例,可能需要指导用户如何修改现有的ConvLSTM代码来适应他们的数据格式。 另外,用户可能对如何处理InSAR数据的具体步骤不太清楚,比如数据预处理、构建空序列、模型结构设计等。需要分步骤解释,并建议参考类似问题的解决方案,比如使用U-Net结合LSTM,或者在GitHub上寻找开源项目。 还需要注意引用相关的资源,比如提到的深度学习模型编码输入数据的有效性,可能需要引用相关的论文或文档。同,要确保推荐的代码示例符合用户的技术栈,比如使用TensorFlow或PyTorch,并提供链接方便用户访问。 最后,生成相关问题要围绕ConvLSTM的应用、InSAR数据预处理、模型调优以及Kaggle上的资源展开,帮助用户进一步深入学习和解决问题。</think>在Kaggle平台上使用ConvLSTM进行InSAR预测的实现可分为以下关键步骤: ### 一、数据准备 1. 获取InSAR序数据集 - Kaggle搜索关键词:"InSAR time series"/"satellite deformation data" - 推荐数据集:`European Space Agency Sentinel-1 SAR data` - 数据预处理示例: ```python import numpy as np def load_insar_stack(hdf5_path): with h5py.File(hdf5_path, 'r') as f: phase_stack = f['phase_data'][:] return phase_stack.astype(np.float32) ``` ### 二、模型架构 2. ConvLSTM基础实现(基于TensorFlow/Keras) ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ConvLSTM2D, BatchNormalization def build_convlstm(input_shape): model = Sequential([ ConvLSTM2D(filters=64, kernel_size=(3,3), padding='same', return_sequences=True, input_shape=input_shape), BatchNormalization(), ConvLSTM2D(filters=64, kernel_size=(3,3), padding='same', return_sequences=False), BatchNormalization() ]) return model ``` ### 三、Kaggle资源利用 3. 推荐参考项目: - [LANDSAT Time Series Prediction with ConvLSTM](https://www.kaggle.com/code/xxxxxx) (需替换实际存在的项目链接) - `Sentinel-1 Data Processing Starter` 数据集包含SAR数据预处理范例 ### 四、关键实现细节 4. 空特征处理技巧: - 将InSAR相位序列构建为$(timesteps, height, width, channels)$张量 - 使用相位解缠数据作为输入,地表形变速率作为输出标签 - 添加空间注意力机制增强特征提取能力[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

taco_HUA_James

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值