Numpy 提供了高性能多维数组 array 和基本工具来操作这些数组。SciPy在此基础上构建,并提供了大量对 numpy array 进行操作的函数。在这里我们只介绍一些可能在该课程中用到的 SciPy 知识。最好的全面学习 SciPy 方法——浏览 SciPy 官方文档:SciPy API — SciPy v1.14.1 Manual
Image operations(图像操作)
SciPy 提供了一些处理图像的基本函数。例如,将图像从磁盘内存读入 numpy array、将 numpy array 作为图像写入磁盘内存、调整图像大小。示例:
import imageio.v2 as imageio # 避免 DeprecationWarning
from PIL import Image
import numpy as np
# 读取图像
img = imageio.imread(r"C:\Users\Zoe\Pictures\Screenshots\0.png")
# 打印图像的数据类型和形状
print(img.dtype, img.shape)
# 对 RGB 通道进行着色,保持 Alpha 通道不变
img_tinted = img.copy()
img_tinted[:, :, :3] = img[:, :, :3] * [1, 0.95, 0.9]
# 确保数值在 0-255 范围内,并转换为 uint8 类型
img_tinted = np.clip(img_tinted, 0, 255).astype(np.uint8)
# 使用 Pillow 进行图像大小调整
img_tinted_pil = Image.fromarray(img_tinted)
img_tinted_resized = img_tinted_pil.resize((300, 300))
# 保存调整后的图像
img_tinted_resized.save(r"C:\Users\Zoe\Desktop\2024104.png")
Distance between points
SciPy定义了一些函数来计算点集之间的距离。
函数 scipy. space .distance.pdist 计算给定集合中所有点对之间的距离:
import numpy as np
from scipy.spatial.distance import pdist, squareform
# Create the following array where each row is a point in 2D space:
# [[0 1]
# [1 0]
# [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x)
# Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0. 1.41421356 2.23606798]
# [ 1.41421356 0. 1. ]
# [ 2.23606798 1. 0. ]]
d = squareform(pdist(x, 'euclidean'))
print(d)