SVM软间隔

图解来自于哔哩哔哩Up主:FunInCode

1.损失函数

接下来我们移动点a。

 可以看到,当点a向负超平面移动时,\varepsilon _{a}不断向0靠近。当a处于负超平面时,\varepsilon _{a}=0

 之后我们顺着相同方向继续移动数据点a,原约束条件A\geq 1 并不会被破坏,仍有\varepsilon _{a}=0。显然,那些本来就符合硬间隔约束条件的点的损失值始终是0。

 当我们把点a向正超平面方向移动时,\varepsilon _{a}也会线性增加。

所以对于任意点i,它的损失值可以表示为

由于该函数的图形特点,我们将它称之为“铰链损失函数” (Hinge Loss Function)

 2.优化问题

但 w 和 \varepsilon _{i} 会相互制约,w 越大,L=\frac{2}{\left \| w \right \|} 间隔越小,\Sigma \varepsilon _{i} 越小。 w 越小,L=\frac{2}{\left \| w \right \|} 间隔越大,\Sigma \varepsilon _{i}越大。而w 和 \varepsilon _{i} 需要达到平衡,使二者相加最小化,才能实现 f(w) 的最优。

在实际求解的时候,我们会对目标函数的损失值部分乘 C,得到

C可以控制我们对损失值\varepsilon _{i}的容忍度,起到惩罚\varepsilon _{i}的作用。C值大,说明函数值对\varepsilon _{i}敏感,对\varepsilon _{i}容忍度低。一个极大的C会使我们无法容忍\varepsilon _{i},使最优解中的\varepsilon _{i}=0 ,等价于硬间隔问题。因此选择合适的C,对SVM分类的效果很重要。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值