SVM之软间隔_机器学习

前言

    硬间隔,就是存在所有样本必须划分正确的约束条件,即所有样本必须严格满足约束条件
    y_i(w^Tx_i+b) \geq 1

但样本集中总是存在一些噪音点或者离群点,如果强制要求所有的样本点都满足硬间隔,可能会导致出现过拟合的问题,甚至会使决策边界发生变化,为了避免这个问题的发生,所以在训练过程的模型中,允许部分样本(离群点或者噪音点)不必满足该约束。当然在最大化间隔的同时,不满足约束的样本应尽可能少

   为了 解决上面问题,引入了软间隔


目录:

  1.       线性支持向量机
  2.       对偶算法求解问题
  3.        KKT条件
  4.        支持向量

 

一   线性支持向量机

      当部分样本点不满足函数间隔大于等于1的约束条件,需要引入松弛变量\epsilon_i \geq 0

       满足约束条件:

       y_i(w^Tx_i+b) \geq 1-\epsilon_i

 

     目标函数边变为:

      \frac{1}{2}||w||^2+C\sum_{i=1}^{N} \epsilon_i


二  学习对偶算法

     L(w,b,\epsilon,\alpha,u)=\frac{1}{2}||w||^2+C\sum_{i=1}^{N}\epsilon_i-\sum_{i=1}^{N}\alpha_i(y_i(w^Tx_i+b)-1+\epsilon_i)-\sum_{i=1}^{N}u_i\epsilon_i.....................1

    其中 u_i \geq 0, \alpha_i \geq 0

    首先对w,b,\epsilon 求导,求极小值得到:

    \bigtriangledown_w L =w- \sum_{i=1}^{N}\alpha_iy_ix_i=0

    \bigtriangledown_b L =-\sum_{i=1}^{N}\alpha_iy_i=0

    \bigtriangledown_{\epsilon_i} L =C -\alpha_i-u_i=0

 带入1, 得到

  min_{w,b,\epsilon}L=-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy_iy_j(x_i^Tx_j)+\sum_{i=1}^{N}\alpha_i

再求\alpha的极大,即得到对偶问题:

    max_{\alpha} - \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy_iy_j(x_i^Tx_j)+\sum\alpha_i

  约束条件st:

 \sum_{i=1}^{N} \alpha_iy_i=0

 C=\alpha_i+u_i

 \alpha_i \geq 0

 u_i \geq 0

 

利用等式消去u_i,

0 \leq \alpha_i \leq C



  三 KKT 条件

     w=\sum_{i=1}^{N}\alpha_i y_ix_i

     b= y_j-\sum_{i=1}^{N} y_i\alpha_i(x_i^Tx_j)

     原始问题是凸二次规划问题,解满足KKT条件:

     \bigtriangledown_w L =w- \sum_{i=1}^{N}\alpha_iy_ix_i=0

   \bigtriangledown_b L =-\sum_{i=1}^{N}\alpha_iy_i=0

    \bigtriangledown_{\epsilon_i} L =C -\alpha_i-u_i=0

    \alpha_i(y_i(w^Tx_i+b)-1+\epsilon_i)=0

    u_i\epsilon_i=0

   \alpha_i=0

   \epsilon_i=0

   u_i \geq 0

     

得到分离超平面:

   w^Tx+b=0

分类决策函数

  f(x)=sign(w^Tx+b)

      

  四 支持向量

     

 

          4.1 \alpha_i <C

                u_i \in(0,C), \epsilon_i =0

                x_i 落在间隔边界上

         

         4.2   \alpha_i=C

                      4.2.1  若  0<\epsilon_i<1      则 ,u_i =0, 分类正确,落在间隔与分离超平面间

                      4.2.2  若 \epsilon_i=1,则 点落在分离超平面上

                      4.2.3   若 \epsilon_i>1, 则分类错误

 

参考文献:

   《  统计学习方法》

           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值