前言
2017年5月,乌镇围棋峰会上AlphaGo与世界排名第一的柯洁对战并取得3:0的胜利,自此人工智能被公认棋力超过人类顶尖棋手。逐渐进入大众视野的AI的优异表现不仅体现在此,而是在各行各业、方方面面。气象领域上,数值模拟作为传统手段被广泛采用于天气预报,AI的出现正悄然改变这一状况。
本文从天气预报重要性、传统数值模拟、AI气象大模型以及AI在天气预报的应用与操作四个方面展开讲述。
1. 天气预报重要性
天气预报是现代社会不可或缺的重要工具,它通过对气象数据的科学分析,帮助人们提前了解天气变化,不仅在灾害预警中发挥关键作用,降低自然灾害对生命财产的威胁,还为农业生产、交通出行、能源管理等领域提供指导,提升工作和生活的效率与安全性。无论是安排日常活动,还是应对极端天气,天气预报都为我们提供了科学依据,能够帮助我们更从容地应对自然环境的不确定性。来自世界气象组织 (WMO) 的数据显示,在过去 50 年里,平均每一天都会发生一场与天气、气候或水患有关的灾害,而每一场灾害平均会造成约 115 人死亡、约 2.02 亿美元的经济损失。因此,及时、准确的天气预测不仅可以每年帮助挽救数万人的生命,还能够降低极端天气和气候事件对人类社会和生态系统的灾难性影响。
1.1 灾害预警
天气预报能够提前预测自然灾害,如台风、暴雨、雪灾等。它通过对气象数据的实时监测和分析,为人们提供准确、及时的天气信息,帮助政府和公众做好应对准备,减少损失。例如,中央气象台的暴雪预警分为四个级别,在预测到大范围雪灾时,天气预报可以提前发布预警,提醒居民储备生活物资,减少出行;同时,相关部门可以安排铲雪设备和救援力量,确保道路畅通和民众安全,从而有效降低雪灾的影响。
1.2 日常生活
天气预报可以帮助人们合理安排日常活动,比如出行、运动和穿衣,从而提高生活质量。并且可以为人们提供准确的气象信息,帮助规划行程、选择适宜的交通工具,避免因恶劣天气而产生的不便或危险。例如,当发布大风预警时,天气预报可以提醒人们避免在风力较大的时段出行,特别是高空作业人员和驾驶大货车的司机,确保出行安全和效率。
1.3 农业生产
农民可以根据天气预报合理安排播种、施肥、灌溉和收获等农业活动,降低天气变化对作物生长的影响,提升农业生产效率。例如,在发布冰冻预警时,天气预报可以提醒农民提前采取措施,如覆盖作物、调控温室温度或加固农田设施,从而减少低温冻害对作物的损害,保障农作物的健康生长和农业收益。

1.4 交通安全
准确的天气预测对于航空、航海和陆路运输至关重要,可以减少因恶劣天气导致的交通事故。及时发布气象信息,可以帮助交通管理部门和出行者识别潜在风险,提前调整计划,降低因恶劣天气引发的事故率。例如,在发布大雾预警时,天气预报可以提醒驾驶员降低车速、开启雾灯,减少追尾事故,有效维护交通秩序和生命财产安全。
1.5 资源管理
天气预报通过天、地、海的综合观测,利用风速、温度、湿度等关键数据,实时监测天气变化,为资源管理提供科学依据。通过这些精密的观测仪器,气象工作者可以提前发现可能引发灾害的天气异常,从而帮助能源、农业、交通等领域合理规划资源,避免因极端天气导致的浪费或损失。例如,在出现大范围强降雪前,气象部门可以根据观测数据发布预警,指导电力部门合理调度能源,确保供暖资源的高效分配,同时提醒相关行业做好物资储备和应对准备,提升资源利用率和社会运行的安全性。
1.6 健康和生活方式
某些天气条件 (如高温、极寒、湿度等) 可能影响人们的健康,天气预报可以提醒人们采取必要的预防措施。例如,通过发布寒潮预警等信息,提醒人们根据气温变化及时增添衣物,调整作息,防止寒冷天气对健康的影响,特别是对老人、儿童及体弱者的保护。例如,当寒潮橙色预警发布时,人们可以提前做好保暖措施,如加强室内供暖、减少户外活动等,以预防因低温导致的感冒、冻伤等健康问题,从而更好地适应天气变化,维护日常生活的舒适与安全。

总的来说,准确的天气预报在提升安全性、增强生产效率和改善生活质量等方面发挥着重要作用。
2. 传统数值模拟
数值天气预报 (Numerical Weather Prediction, NWP) 基于流体动力学和热力学方程计算未来某个时间的天气状态。数值天气预报的计算数据极其庞杂,其所消耗的算力资源正随着天气预报分辨率的升高和预报时间的延长迅速增加。
2.1 数值天气预报的历史进程
从理论概念发展成为一门科学实践,数值天气预报的形成离不开这三个里程碑事件。1903年,挪威气象学派率先提出“天气预报是描述大气运动的数学方程组的解”的观点,即天气预报可以通过描述大气运动的数学方程组来实现,这标志着物理和数学方法被正式引入气象学研究。1941年,芝加哥学派发展了大气长波理论,加强了气象学与热力学和动力学的联系,为气象分析和预报提供了更坚实的物理学基础。1950年,芝加哥学派的气象学家与计算机科学家约翰·冯·诺依曼合作,利用新兴的电子计算机技术,首次成功进行了数值天气预报。这一成就标志着气象学转变为一门可以进行精确定量研究的现代科学。

2.2 数值天气预报的空间尺度
数值天气预报中不同尺度的天气现象预测难度各有特点:
(1) 湍流现象 (0.01km):湍流是大气中非常小尺度的混乱运动,预测难度极高,因为它们对初始条件极其敏感,且计算成本非常高。湍流现象的模拟复杂性大,需要极高的模式分辨率。
(2) 对流现象 (1km):对流涉及空气上升和下降的循环过程,如雷暴和强对流天气。这些现象的模拟需要较高的分辨率,但相对于湍流,其计算成本较低。对流现象的预测难度在于准确捕捉其发生和发展的物理过程。
(3) 风暴现象 (10km):包括台风、飓风等大型风暴系统。这些现象的模拟需要在较大的空间尺度上进行,但相对于湍流,其时间尺度较长,对分辨率的要求相对较低。风暴现象的预测难度在于模拟其路径和强度的变化。
(4) 锋面现象 (100km):锋面是冷暖空气相遇形成的边界,是天气变化的重要驱动力。锋面的模拟需要在中等尺度上进行,对模式分辨率和复杂性的要求适中。锋面现象的预测难度在于准确模拟冷暖空气的相互作用和锋面位置的变化。
(5)全球气候模式 (1000km):关注全球气候模式,如年际变化和海温相关现象。这些现象的模拟需要在最大的空间尺度上进行,对模式分辨率的要求相对较低,但需要考虑更多的物理过程和参数化。全球气候模式的预测难度在于处理大量的数据和复杂的地球系统耦合过程。

2.3 数值天气预报的常见模型
2.3.1 WRF (天气研究与预报模型)
用于气象研究和预报的高分辨率数值天气预报系统。WRF模型由美国国家大气研究中心 (NCAR) 和其他气象研究机构共同开发,是一个高度模块化、灵活的气象预报和研究工具,主要应用于短期天气预报和气候模拟、局地气象事件 (如雷暴、台风等)的研究、环境气象模型 (如空气污染扩散) 等领域。
其主要特点是:WRF能够在很高的空间和时间分辨率下进行气象模拟,通常用于局地天气的预测和研究;WRF可以用于从短期天气预报到长时间尺度的气候研究; WRF支持多种物理过程的参数化,如辐射过程、降水过程、边界层过程等,可以根据研究需要灵活选择;WRF支持多层次的气象模型,包括大气层的不同高度、不同的动力学和物理模型,可以模拟不同规模的气象现象。
2.3.2 MM5 (中尺度模型5)
MM5是由美国国家大气研究中心 (NCAR) 开发的一个中尺度气象数值模型。它主要用于模拟中尺度气象现象,如雷暴、锋面、降水、风暴等。MM5是一个功能强大的气象研究工具,能够在较高的分辨率下进行天气模拟。
其主要特点是: MM5专门用于模拟中尺度气象现象,能够捕捉气象系统的空间尺度和时间尺度范围;MM5支持多层次的气象模拟,可以设置多个垂直层次和水平分辨率,适应不同的研究需求;MM5包括了多种物理过程的参数化,如云物理、辐射、降水、边界层过程等,可以根据需要选择;MM5支持嵌套网格,可以在更精细的分辨率下对小尺度气象现象进行更高精度的模拟


2.3.3 Envi-met (微气候模型)
Envi-met主要应用于城市气候研究,特别是热岛效应、空气质量预测与评估、空气质量预测与评估、研究气候变化对城市环境的影响。
其主要特点是:Envi-met能够模拟城市和乡村环境中的微气候,考虑地面、建筑物、植物以及人类活动等因素的影响;Envi-met通常用于小尺度模拟,空间分辨率可以达到1米级别,非常适合用于城市环境、建筑物周围的气候研究;Envi-met模型能够模拟植物蒸散、地表热交换、城市热岛效应、风速和风向等影响微气候的关键因素;Envi-met可以用于评估城市设计、绿化、建筑等因素对城市气候的影响。
模型 | 主要特点 | 典型应用场景 |
WRF | 高分辨率天气预报,适用于从全球到局地的气象模拟,灵活的物理参数化方案, | 天气预报、气候模拟、空气污染、大气研究等 |
MM5 | 中尺度气象模拟,适用于高分辨率的天气事件模拟。 | 中尺度气象研究、天气预报、风能研究等。 |
Envi-met | 适用于城市微气候模拟,关注城市热岛效应、空气质量、绿化等因素。 | 城市气候、热岛效应、空气质量、城市规划等。 |
2.4 数值天气预报的其他方法
(1) 大气环流模型:单纯模拟大气的流动,忽略海洋和陆地的反馈效应。
(2) 耦合气候模型:同时模拟大气、海洋和陆地的相互作用。


(3) 马尔可夫模型 (Markov):Markov模型可以用于短期天气预报,尤其是对于天气状态 (如晴天、阴天、雨天等) 的概率预测。假设未来的天气状态仅与当前天气状态相关 (而不是与过去的历史数据相关),就可以使用Markov链来建模天气的变化。
(4) 自回归模型 (AR):是一种统计模型,用于描述和预测时间序列数据的变化,特别是针对气象变量 (如气温、降水量、风速等) 的预测。自回归模型的基本思想是基于过去的观察数据来预测当前或未来的值。其核心假设是:时间序列的当前值与过去的若干值之间存在某种线性关系。


3. AI气象大模型
不同于现代数值天气预报 (Numerical Weather Prediction, NWP),气象AI大模型以数据驱动为出发点,深度挖掘多变量气象要素时空变化特征,实现未来中短期的天气预测。因此,气象AI大模型降低了天气预报的门槛,同时节省了传统NWP天气预测模型所需计算资源。目前作为天气预报的新势力,气象AI大模型是否存在短板、预报能力如何是大家最为关心的问题。在极端天气预测上,尤其是在极端高温、强对流天气、台风活动下,气象AI大模型表现如何,仍有待更多案例进行验证。
3.1 AI模型与数值天气预报对比
不同于现代数值天气预报 (Numerical Weather Prediction, NWP),气象AI大模型以数据驱动为出发点,深度挖掘多变量气象要素时空变化特征,实现未来中短期的天气预测。因此,气象AI大模型降低了天气预报的门槛,同时节省了传统NWP天气预测模型所需计算资源。目前作为天气预报的新势力,气象AI大模型是否存在短板、预报能力如何是大家最为关心的问题。在极端天气预测上,尤其是在极端高温、强对流天气、台风活动下,气象AI大模型表现如何,仍有待更多案例进行验证。
传统数值模拟 | AI气象大模型 | |
原理/方法 | 基础方程 + 初始 & 边界条件,离散化求解 | 深度学习 + 数据分析 |
数据来源 | 严格的观测数据 | 多维度数据 |
计算要求 | 计算复杂且庞大,需要高性能计算机 | 不依赖于复杂的物理方程解算 |
计算精度 | 短期精度高,中长期精度降低 | 更高的时空分辨率 |
适用范围 | 特别是大气物理过程和极端天气事件 | 多种天气预测任务 |
优势 | 具有较强的物理可解释性 | 不需要明确的物理方程 |
局限性 | 计算量大、受模型及初始条件影响大 | 缺乏物理可解释性、 对数据的依赖性较大 |
3.2 气象大模型介绍
2022 年,英伟达推出 AI 预报模型——FourCastNet,该模型首次把预报水平分辨率提升到了和数值预报相比拟的水平。同年11月,华为云盘古气象大模型横空出世,成为首个精度超过传统数值预报方法的AI模型,速度相比传统数值预报提速1万倍以上,相关研究在国际顶级学术期刊《自然》 (Nature) 杂志正刊发表。随着AI技术发展和算力不断提升,气象AI大模型迅速发展。2023年,上海人工智能实验室AI for Earth联合团队研发了风乌大模型,复旦大学人工智能创新孵化研究院推出伏羲大模型,为气象AI大模型提供了不一样的技术路线,能够对全球中期天气进行快速、准确预报。
3.2.1 英伟达FourCastnet模型
FourCastNet是傅里叶预测神经网络 (Fourier ForeCasting Neural Network) 的缩写,是一个全球数据驱动的天气预报模型,由NVIDIA、劳伦斯伯克利国家实验室、密歇根大学等研究人员开发。它提供了关键全球天气指标的中期预报,分辨率为0.25°。相当于赤道附近约30公里x30公里的空间分辨率和大小为720 x 1440像素的全球网格。与传统的NWP模型相比,该模型的预报速度提高了45000倍,2秒内生成一周的天气预报,预报精度与最先进的数值天气预报模型ECMWF综合预报系统 (IFS)相当。这是第一个可以直接与IFS系统进行比较的AI天气预报模型。为了实现高分辨率预测,FourCastNet使用AFNO模型。该模型网络体系结构是为高分辨率输入而设计的,以ViT为骨干网,并结合了李宗义等人提出的傅里叶神经算子 (FNO)。该模型学习函数空间之间的映射,从而求解一系列非线性偏微分方程。
Vision Transforme (ViT) 体系结构及其变体在过去几年中已成为计算机视觉中最先进的技术,在许多任务中表现出卓越的性能。这种性能主要归因于网络中的多头自注意机制,它使网络中每一层特征之间的全局建模。然而,模型在训练和推理期间的计算复杂度随着令牌 (或patches) 数量的增加而二次增加,模型计算复杂度随着输入分辨率的增加而爆炸性增加。AFNO模型的独创性在于,它将空间混合操作转换为傅里叶变换,混合不同令牌的信息,将特征从空域转换为频域,并对频域特征应用全局可学习滤波器。空间混合复杂度有效地降低到O(NlogN),其中N是token的数量。

3.2.2 华为云盘古大模型
华为云盘古大模型研发团队发现,AI气象预报模型的精度不足主要有两个原因:第一,原有的AI气象预报模型都是基于2D神经网络,无法很好地处理不均匀的3D气象数据;第二,AI方法缺少数学物理机理约束,因此在迭代的过程中会不断积累迭代误差。
3DEST架构主要引入地球特定先验信息,将高度定义为一个维度,可以捕获不同压力水平下的大气状态之间的关系,产生显著的精度增益。应用分层时间聚合算法,训练一系列模型增加预测提前期,使得迭代次数减少。

3.2.3 伏羲气象系统
复旦大学 (人工智能创新与产业研究院、大气与海洋科学系)、上海科学智能研究院、中国气象局联合研发了首个Z500可预报天数超过EC的端到端的气象大模型:“伏羲气象系统” (FuXi Weather)。该系统集成了资料同化和预报两大部分,真正实现了端到端的优化模型,在仅同化掩星和5种不同极轨卫星的观测数据,就可以实现13个气压层下的5个高空大气变量的循环同化和预报,并在气象预报的某些重要指标上超越了欧洲气象中心 (ECMWF)的高分辨率预报 (HRES)。
针对不同类型的观测数据,“伏羲气象系统”会统一将它们网格化,再针对不同的类型的观测数据以及背景场中的不同变量分别建模,并对这些变量的中间特征在融合模块 (Fusion Module) 进行融合,而神经网络则会从不同模态的特征学习到不同的信息,并对每个模态补全和修正,最后输出一个分析场。

3.2.4 “风乌”大模型
2023年4月7日,上海人工智能实验室联合中国科学技术大学、上海交通大学、南京信息工程大学、中国科学院大气物理研究所及上海中心气象台发布全球中期天气预报大模型“风乌”。基于多模态和多任务深度学习方法构建,AI大模型“风乌”首次实现在高分辨率上对核心大气变量进行超过10天的有效预报,并在80%的评估指标上超越DeepMind发布的模型GraphCast。此外,“风乌”仅需30秒即可生成未来10天全球高精度预报结果,在效率上大幅优于传统模型。
从结果上看,“风乌”在6到10天的中期预报上预报技巧显著高于GraphCast。其中具有代表意义的z500达到了10.75天的有效预报范围 (ACC>0.6),这也是高分辨率全球中期天气预报系统首次能够对大气变量进行超过10天的有效预报。

3.2.5 谷歌GraphCast
GraphCast来自谷歌的DeepMind研究所,Graph指用Graph Neural Network图神经网络;Cast指任务是ForeCast预报。作为一种基于机器学习的天气模拟器,它超过了世界上最准确的中期确定性业务天气预报系统,以及所有先前的机器学习先进方法。它是一个自回归模型,基于图神经网络和新颖的高分辨率多尺度网格表示,我们在欧洲中期天气预报中心 (ECMWF) 的ERA5再分析档案中的历史天气数据上训练。它可以以6小时的时间间隔产生10天的预报,包含五个地面变量和六个大气变量,每个变量有37个垂直压力层级,0.25°纬度-经度分辨率的网格上,对应于赤道附近约25×25千米的分辨率。
我们的结果显示,在我们评估的2760个变量和时间节点的组合数据上,90.0%的数据结果表明,GraphCast比ECMWF的确定性业务预报系统HRES更准确。GraphCast也超过了最准确的机器学习天气预报模型在其报告的252个目标中的99.2%。GraphCast可以在Cloud TPU v4硬件上60秒内生成10天的预报 (35 GB字节的数据)。

3.2.6 谷歌NeuralGCM
7月23日,美国谷歌公司研究团队在《Nature》发文,研发出可预测天气和气候变化的人工智能 (AI)模型NeuralGCM。该模型是世界上第一个基于机器学习的大气环流模型,与现有工具相比预测速度更快、能耗更低,且可以比传统模型节省数量级的计算量。
传统基于物理的气候模型 (GCM,全球气候模型) 在预测大气、海洋、冰层等复杂系统时虽已取得显著进展,但计算成本高、耗时长且精度有限,难以满足日益增长的精准预测需求。NeuralGCM模型不仅融合了传统物理建模的严谨性,还借助神经网络的强大学习能力,实现了气候预测的高效与精准。该模型的核心在于两个关键组成部分是可微分的动力学core和学习物理模块,其中,可微分动力学core允许采用端到端的训练方法,即在多个时间步骤上通过随机梯度下降优化模型参数,以最小化预测与真实数据之间的差异。这种训练方法不仅提高了模型的泛化能力,还显著降低了计算成本。
NeuralGCM能够生成2至15天的天气预报,其准确性甚至超越了目前基于物理的“黄金标准”模型。在1至10天的预报中,它与机器学习模型相媲美;而在1至15天的预报中,则与欧洲中期天气预报中心的集合预报系 (ECMWF-ENS) 不相上下。这种高精度预报能力对于气象灾害预警、农业规划、能源管理等领域具有重要意义。NeuralGCM不仅在短期天气预报中表现出色,在气候时间尺度的预测上也展现出巨大潜力。在预测1980年至2020年间40年的温度变化时,NeuralGCM的2.8°确定性模型的平均误差仅为0.25摄氏度,远低于大气模型 (AMIP) 的0.75摄氏度。与传统大气环流模型相比,NeuralGCM在同等预测精确度的情况下,计算速度遥遥领先。NeuralGCM可以在30秒计算时间内生成22.8天大气模拟,比传统模型节省3到5个数量级的计算资源。随着数值方法和机器学习架构的迭代,NeuralGCM预测天气、气候的准确性还存在很大的提升空间。在全球气候变暖的背景下,NeuralGCM对于帮助人类更好地理解和预测全球气候变化具有重要作用。


3.2.7 中国气象局“风清风雷风顺”
6月18日,中国气象局发布人工智能全球中短期预报系统“风清” (以下简称“风清”大模型)、人工智能临近预报系统“风雷” (以下简称“风雷”大模型) 和人工智能全球次季节-季节预测系统“风顺” (以下简称“风顺”大模型)。
综合国内气象大模型发展并对标国际前沿进展,中国气象局联合清华大学组建攻关团队,在大模型预报核心技术、预报精准程度上寻求突破,构建了“风清”大模型。该模型具有大气强物理融入和可解释性,在实现高效计算的同时,可为预测结果提供物理可解释性依据,自动挖掘包括天气系统内在的物理演变。该模型的训练过程紧密结合物理守恒特性,可有效提升长时效预报结果的活跃度。该模型采用可扩展的多时效优化策略,可综合考虑未来多天预报的效果,有效延长预报时效,不断提升短中期预报效果。检验结果表明,该模型全球可用预报天数达到10.5天,超过欧美主流气象预报大模型,尤其是在较长预报时效,具有更为明显的优势。
聚焦临近预报中的核心难题,中国气象局与清华大学联合攻关团队构建“风雷”大模型。该模型将数据驱动与物理驱动两大科学范式紧密结合,显著提高了公里尺度下0至3小时雷达回波的预报能力,并实现深度学习与物理规律的无缝隙融合。同时,“风雷”大模型将物理模型的中尺度预测和人工智能的对流尺度预测有机融合,在预测准确性和细节丰富性上实现突破。同时,构建了一套“数据—算力—平台”全流程短临预报系统,能够在3分钟内生成0至3小时逐6分钟的雷达回波外推产品,实现强回波预报技巧提升25%。
面向15天以上更大不确定性的气候预测难题,中国气象局联合复旦大学和上海科学智能研究院基于人工智能方法构建了“风顺”大模型。“风顺”大模型创新地引入基于流依赖的集合扰动智能生成技术,从而更加合理地抓住了未来气候系统演变的不确定性,同时“风顺”还纳入了海气相互作用关键过程,进而提升了对热带大气季节内振荡MJO的预测技巧。该系统在中国气象局智算平台上完成了业务部署,逐日滚动开展100个集合成员的大样本预测,形成了面向未来60天全球基本要素和极端事件的确定性和概率预报测试产品,对全球降水的预测技巧展示出一定的优势。
值得一提的是,“风清”“风雷”“风顺”三个大模型,完成了基于国产全球大气再分析资料CRA-40、雷达观测资料、风云卫星遥感资料的训练和检验评估,有效降低了目前主流气象预报大模型对国际再分析资料的依赖度。
3.3 模型对比
Liu et al (2024) 使用来自ERA5的相同初始条件,对五个著名的全球MLWP模型 (PanguWeather、FourCastNet、GraphCast、FuXi和FengWu) 进行比较。评估范围是2023年6月至11月的东亚和西太平洋地区。评估包括指定区域内的均方根误差和异常相关系数,台风路径和强度预测,以及对台风海葵的案例研究。结果表明,FengWu模型表现最佳,其次是FuXi和GraphCast,FCN2和Pangu-Weather排名较低。通过平均五个模型的预测构建的多模型集合显示出优越的性能,与FengWu相媲美。对于2023年的11个台风,FengWu展示了最准确的路径预测;然而,它也具有最大的强度误差。
(1) 模型性能比较: 在东亚和西太平洋区域,FengWu模型在预测天气方面表现最佳,其次是FuXi和GraphCast,而FCN2和Pangu-Weather排名较低。
(2) 多模型集成: 通过平均五个模型的预测,构建的多模型集合在预测性能上与最佳单一模型FengWu相当。
(3) 台风路径预测: 在2023年的11个台风案例中,FengWu在路径预测方面表现最为精确。
(4) 台风强度预测: FengWu在台风强度预测方面表现不佳,而GraphCast和Pangu-Weather在强度预测方面误差最小。
(5) 模型偏差分析: 所有MLWP模型在西太平洋副热带高压 (WPSH)的预测上均显示出偏差,其中Pangu-Weather显示出最大的偏差,而FengWu显示出最小的偏差。
(6) 台风发展预测: MLWP模型能够预测台风的形成,但预测能力在不同模型间有所差异。

