论文阅读9-----GLOBAL EXPLAINABILITY OF GNNS VIA LOGICCOMBINATION OF LEARNED CONCEPTS

目录

0.写在前面(概念补充)

0.1 CNN可解释性

0.2 GNN的可解释性

1.ABSTRACT

2. INTRODUCTION & RELATED WORK

3.BACKGROUND

3.1 GRAPH NEURAL NETWORKS

3.2 LOCAL EXPLAINABILITY FOR GNNS

4. PROPOSED METHOD

5. EXPERIMENTS

5.1 DATASETS

 5.2 IMPLEMENTATION DETAILS

5.3 评估指标

5.4  EXPERIMENTAL RESULTS

6.CONCLUSION

7. 启发

8.问题


0.写在前面(概念补充)

0.1 CNN可解释性

   Interpretability of CNN 即CNN的可解释性,研究者们希望看到CNN每一层所做的事情,截止目前,人们已经逐渐向CNN的可解释研究靠近,但没有完全解决;类似地,自然语言处理的重要模型RNN也存在没有完全解决可解释性的问题;深度学习是基于数据而驱动的,对比传统的算法,往往是基于各种判断条件,再依次执行计算;深度学习可以认为是数据归纳统计的结果,让机器在海量数据中学习分布,以概率形式输出结果,中间的计算过程犹如黑箱(Black Box),大部分人只关心调整参数获得一个可用的结果,没有过多关心内部发生的事情;

             

       可以看出,在黑箱模输出后,需要可解释性的方法才能让人理解更多信息,另外,相比经典的机器学习算法,准确率上升的同时,可解释性逐渐下降;

       深度学习在医学领域受到一定的排斥,原因在于过度缺乏可解释性,如果不关注模型内部形成的小概率对象,会对医疗的诊断造成极大隐患;比如用深度学习模型分类医疗图像(判断是否是癌细胞),模型只能说是帮助医生作判断,但不能代替医生作决定,比如模型会指出属于癌细胞的概率大小,但不能让人信任地说明模型给出分类癌细胞概率大小的理由;

     现在假设每个filter的内容与计算模式都由研究者亲手设计,则我们可以明确我们想要检测的特征,我们也可以明确填充的意义,步长选择的意义,但这些不代表模型是可解释的,因为在实际训练中,关于CNN的层数,迭代次数,参数初始化,优化方法的选择,都是难以解释的,我们总是依靠经验进行调整;

     关于CNN可解释性的研究,分为两类:

    1.参数的可视化


2.特征的可视化。低层特征图可视化(9个通道)                高层特征图可视化(9个通道) 

                  
  

0.2 GNN的可解释性

    GNN相比CNN更加抽象,GNN所处理的Graph本身就是抽象的,不论从参数或数据变换的可视化,都是让人难以直观理解的;图神经网络是目前深度学习领域最热门的话题,但其解释性问题并没有得到广泛关注,研究图神经网络可解释性的优势在于:

  • 提升GNN的可信赖程度;
  • 帮助研究者理解图本身的特性;

较为通用的一篇论文是"GNNExplainer: Generating Explanationsfor Graph Neural Networks";论文以两个方向为主:

  • 1.从宏观上了解GNN对每个特定的任务,哪些结构更重要;
  • 2.从微观角度考虑,对于具体的特征向量,哪些维度更重要;

     上图给出如何对GNN预测的节点分类(Basketball和Sailing)的结果解释;针对节点v i 及其类别"篮球",其邻居中很多人都喜欢球类也有一些喜欢非球类,GNNExplainer可以自动的找到邻居中都喜欢球类的这些人。 同样的,针对节点 v j  ,GNNExplainer也可以发现其好友中同样喜欢水上或沙滩类运动的好友;
       比如"篮球"节点,从宏观上看,我们需要判断其邻居哪些对它更重要,从微观上看,每个邻居的特征向量,哪些维度对节点分类更重要,即下图:

A图:哪些邻居更重要,绿色节点较重要,黄色节点不重要;
B图:各个重要邻居特征的哪些维度更重要,对绿色节点进行分析,红色标记的位置代表该维度不重要;
对于一个已经训练好的GNN模型,使用GNNExplainer的思想进行解释,论文指出,关于如何判断重要性,可以借助互信息(mutual information);
 

关于互信息,信息增益

信息量
离散型随机变量 Y 的概率分布如下:

其中,P ( Y = y i ) = p i  ,i ∈ [ 1 , 2 , . . . , n ] 

随机变量 Y 取某个值的信息量与其对应的概率成反比,用公式表示如下:

一件事发生的概率越高,其信息量越小,当概率值为 1 时成为确定性事件,信息量为零。例如,太阳早上从东边升起属于确定性事件,这个消息的信息量为零。

信息熵
信息熵定义为信息量的数学期望,用公式表示如下:

其中,n 代表随机变量 Y 的取值数量;

信息熵表示随机变量不确定性的大小,信息熵越大,不确定性越高。上面公式中的 Y 代表样本的类别,在解决分类问题时希望 Y 的不确定性越小越好,即信息熵越小越好;


信息增益
信息增益(information gain)表示已知特征 X 的信息使得类别 Y 的不确定性减少的程度。从定义上容易得知:特征 X 的信息增益 = Y 的信息熵 - Y 的条件熵;即:

                      

当信息熵和条件熵中的概率由数据估计(如极大似然估计)得到时,所对应的信息熵与条件熵分别称为经验熵和经验条件熵;

互信息
互信息M I ( X , Y ) 表示两个变量X 与Y 之间关系的强弱:
    

讨论互信息的时候,两个随机变量的地位是相同的;讨论信息增益的时候,是把一个变量看成减小另一个变量不确定程度的手段,但其实二者的数值是相等的;

1.ABSTRACT

     虽然 GNN 的实例级解释是一个经过充分研究的问题,并且正在开发大量方法,但为 GNN 行为提供全局解释的探索却少得多,尽管它在可解释性和调试方面具有潜力。现有的解决方案要么简单地列出给定类的局部解释,要么生成给定类的具有最高分数的合成原型图,完全忽略了 GNN 可以学习的任何组合方面。在这项工作中,我们提出了 GLGExplainer(基于全局逻辑的 GNN 解释器),这是第一个能够将解释生成为所学图形概念的任意布尔组合的全局解释器。 GLGExplainer 是一种完全可微的架构,它将局部解释作为输入,并将它们组合成图形概念上的逻辑公式,表示为局部解释集群。与现有的解决方案相反,GLGExplainer 提供了准确且人类可解释的全局解释,这些解释与ground-truth解释(在合成数据上)完全一致或匹配现有领域知识(在真实世界数据上)。提取的公式忠实于模型预测,甚至可以深入了解模型学到的一些偶尔不正确的规则,这使得 GLGExplainer 成为学习 GNN 的有前途的诊断工具。

2. INTRODUCTION & RELATED WORK

     图神经网络(GNN)在图结构化数据的预测任务中变得越来越流行。然而,与许多其他深度学习模型一样,它们的内部工作仍然是一个黑匣子。理解特定预测的原因的能力代表了任何决策关键应用程序的关键要求,因此代表了此类算法从基准测试到现实世界关键应用程序的过渡的一个大问题。

     前人工作概述

    在过去的几年里,许多工作提出了局部解释器。

年份;人物概述
(Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021; Vu & Thai, 2020; Shan et al., 2021; Pope et al., 2019; Magister et al., 2021)用事实解释来解释 GNN 的决策过程,通常表示为数据集中每个样本的子图。
Yuan et al. (2022)对本地解释器的详细概述,他们最近提出了一种分类法来对这些解释者的异质性进行分类。总体而言,本地解释器揭示了为什么网络预测特定输入样本的特定值。然而,他们仍然缺乏对该模型的全局理解。
(Setzu et al., 2021)GLocalX是一种通用解决方案,通过将局部解释分层聚合为全局规则来生成黑盒模型的全局解释。然而,该解决方案并不容易适用于 GNN,因为它需要将局部解释表达为逻辑规则。
 Yuan et al. (2020)提出了 XGNN,它将 GNN 的全局解释问题框架为输入优化的一种形式 (Wu et al., 2020),使用策略梯度为每个类别生成合成原型图。该方法需要先验领域知识(这并不总是可用)来驱动有效原型的生成。此外,它无法识别返回的解释中的任何组合性,并且没有原则性的方法来为给定的类生成替代解释。

        基于概念的可解释性(Kim et al., 2018;Ghorbani et al., 2019;Yeh et al., 2020)是一条平行的研究路线,其中解释是使用“概念”(即中级、高级和语义上有意义的概念)构建的人类通常用来解释其决策的信息单位。

                    

年份;人物概述
(Koh 等人,2020),(Chen 等人,2019a)概念瓶颈模型原型零件网络是两种流行的架构,它们利用概念学习来学习可解释的设计神经网络。
(Ciravegna et al., 2021a)逻辑解释网络 (LEN)(Ciravegna 等人,2021a)为以一组输入概念表示的每个类生成基于逻辑的解释。这种基于概念的分类器提高了人类的理解,因为它们的输入和输出空间由可解释的符号组成(Wu et al., 2018;Ghorbani et al., 2019;Koh et al., 2020)。这些方法最近已适用于 GNN(Zhang 等人,2022;Georgiev 等人,2022;Magister 等人,2022)。

然而,这些解决方案并不是为了解释已经学习的 GNN。

我们的贡献:

3.BACKGROUND

3.1 GRAPH NEURAL NETWORKS

     给定一个带有邻接矩阵 A 的图 G = (V, E),其中如果节点 i 和 j 之间存在边,则 Aij = 1,并且节点特征矩阵X\in R^{\left | V \right |\times d},其中 Xi 是 r 维特征节点 i 的向量,GNN 层将节点的邻域信息聚合为 d 维精细表示 H\in R^{\left | V \right |\times d}。最常见的聚合形式对应于 GCN (Kipf &Welling, 2016) 架构,由以下传播规则定义:

        

其中 A~ = A + I,D~ 是相对于 A~ 的度矩阵,σ 是激活函数,W\in R^{F\times F} 是逐层学习的线性变换。

3.2 LOCAL EXPLAINABILITY FOR GNNS

     最近,许多作品提出了局部解释器来解释 GNN 的行为(Yuan 等人,2022)。在这项工作中,我们将广泛地指所有那些输出可以映射到输入图的子图的人(Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021; Vu & Thai, 2020;Shan 等人,2021;Pope 等人,2019)。

      为了一般性,令 LEXP(f, G) = G 是通过应用局部解释器 EXP 生成 GNN f 在输入图 G 上的预测的局部解释而获得的加权图,其中每个 Aˆ ij 相对于^G 是边 (i, j) 成为重要边的可能性。通过使用阈值 θ ∈ R 对局部解释器 ˆG 的输出进行二值化,我们获得了一组连通分量 \overline{G_{i}} ,使得 U i G̅ i ⊆ ˆG。为了方便起见,我们今后将把这些 ́Gi 中的每一个称为局部解释。

4. PROPOSED METHOD

    本文的关键贡献是一种新颖的 GNN 全局解释器,它允许通过提供以人类可理解的概念描述的逻辑公式来描述经过训练的 GNN f 的行为(见图 1)。

     在此过程中,我们使用可用的本地解释器之一以获得数据集中每个样本的本地解释。然后,我们将这些局部解释映射到一些学习原型,这些原型将代表最终的高级概念(例如图中的主题)。最后,对于公式提取,我们将概念激活向量输入到基于熵的 LEN (E-LEN)(Barbiero 等人,2021;Ciravegna 等人,2021b),该向量经过训练以匹配 f 的预测。下面,我们将更详细地描述每个步骤。

接下来介绍方法中的几个主要组件:

  1. Local Explanations Extraction:我们传输过程的第一步是提取局部解释。原则上,每个输出可以映射到输入样本的子图的本地解释器都与我们的方法兼容。尽管如此,在这项工作中,我们依赖 PGExplainer (Luo et al., 2020),因为它允许提取任意不连续的主题作为解释,并且在我们的实验中给出了出色的结果。此预处理步骤的结果包含在本地解释列表 D 中,这些解释作为 GLGExplainer 架构的输入提供。有关二值化的更多详细信息请参见第 4.2 节。
  2. Embedding Local Explanations:以下步骤包括学习每个局部解释的嵌入,该嵌入允许将功能相似的局部解释聚集在一起。这是通过标准 GNN h 实现的,它将任何图 G 映射到固定大小的嵌入 h(G) ∈ R^{d}。由于每个局部解释 G 是输入图 G 的子图,因此在我们的实验中,我们使用数据集的原始节点特征。但请注意,可以任意增强这些功能以使聚合更容易。该聚合的结果由图嵌入的集合  E=\left \{ h(\overline{G}),\forall \overline{G}\epsilon D \right \}组成。
  3. Concept Projection: 受到之前原型学习工作的启发(Li et al., 2017; Chen et al., 2019b),我们将嵌入 e ∈ E 的每个图投影到 m 个原型的集合 P {pi ∈R^{d} |i = 1, ....... ,m} 通过以下距离函数:

        原型是从均匀分布中随机初始化的,并与架构的其他参数一起学习。随着训练的进行,原型将作为每个本地解释簇的原型表示进行对齐,这将代表最终的图形概念组。因此,该投影的输出是一个集合 V = { Ve, ∀e ∈ E},其中 Ve = [d(p1, e), .., d(pm, e)] 是一个包含图嵌入的概率分配的向量e(因此映射到它的局部解释)到 m 个概念,并且此后将被称为概念向量。
     
  4. Formulas Learning: 最后一步由 E-LEN 组成,即以熵层作为第一层实现的逻辑可解释网络以熵层作为第一层实现(Barbiero 等人,E-LEN 学习映射概念)激活向量到一个类,同时鼓励稀疏使用概念,允许可靠地提取模拟网络行为的布尔公式。我们训练 E-LEN 来模拟 GNN f 的行为,并用从本地解释中提取的图形概念为其提供数据。给定输入图 Gi 的一组局部解释 ̊G1 . . . ̊Gni 和相应的一组概念向量 v1 . . . vni ,我们通过池化算子聚合概念向量,并将得到的聚合概念向量馈送到E-LEN,提供 f(Gi) 作为监督。在我们的实验中,我们使用了最大池化算子。因此,熵层学习从池化概念向量到 (i) 嵌入 z(作为任何线性层)的映射,其中将被连续的 MLP 用于匹配 f 的预测。 (ii) 真值表 T 解释网络如何利用概念对目标类别进行预测。由于输入池概念向量将构成真值表 T 中的前提,因此提高人类可读性的一个理想特性是离散性,我们使用用于离散 Gumbel-Softmax 估计器的直通(ST)技巧来实现这一点。在实践中,我们通过 argmax 计算前向传递,离散化每个 vi,然后,在后向传递中,为了有利于信息梯度的流动,我们使用其连续版本。
  5. Supervision Loss:GLGExplainer 经过端到端训练,损失如下:
        
        其中 Lsurr 对应于我们的 E-LEN 的预测和要解释的预测之间的 Focal BCELoss (Lin et al., 2017),而 LR1 和 LR2 分别旨在推动每个原型 pj 接近至少一个局部解释并推动每个本地解释接近至少一个原型(Li et al., 2017)。损失定义如下:

       其中 p 和 γ 分别表示正类预测的概率和控制对困难示例进行惩罚的聚焦参数

5. EXPERIMENTS

     我们对合成数据集和真实数据集进行了实验评估,旨在回答以下研究问题:

     • Q1:GLGExplainer 能否提取有意义的全局解释?

     • Q2:GLGExplainer 能否提取忠实的全局解释?

5.1 DATASETS


     我们在三个数据集上测试了我们提出的方法,即:

    BAMultiShapes:BAMultiShapes 是一些流行的综合基准的新引入的扩展(Ying 等人,2019),旨在评估全局解释器处理概念逻辑组合的能力。特别是,我们创建了一个由 1,000 个 Barab´asi-Albert (BA) 图组成的数据集,并在随机位置附加了以下网络图案:房屋、网格、轮子。 0 类包含简单的 BA 图和富含房屋、网格、轮子或这三个主题的 BA 图。第 1 类包含 BA 图,其中包含房屋和网格、房屋和轮子、或轮子和网格。

   Mutagenicity:致突变性数据集是 4,337 个分子图的集合,其中每个图都标记为具有或不具有致突变作用。基于 Debnath 等人。 (1991),分子的致突变性与与硝基共轭的吸电子元素(例如 NO2)的存在相关。此外,具有三个或更多稠合环的化合物往往比具有一或两个稠合环的化合物更具诱变性。之前关于该数据集的大多数工作都集中在寻找官能团 NO2 上,因为大多数工作都在寻找具有两个以上碳环的化合物方面遇到困难。

   Hospital Interaction Network(HIN):HIN 是这项工作中提出的一个新的现实世界基准。它代表了医院收集的面对面互动网络中医生和护士的三阶自我图(Vanhems et al., 2013)。网络中有四种类型的个体:医生(D)、护士(N)、患者(P)和管理员(A)。这种类型构成了每个节点的特征向量,表示为 one-hot 编码。每个自我网络都是一个实例,任务是对自我网络中的自我进行分类是医生还是护士(不知道其节点特征,这些特征被屏蔽)。有关数据集构建的更多详细信息,请参阅附录。

 5.2 IMPLEMENTATION DETAILS

     Local Explanations Extraction:我们使用 PGExplainer (Luo et al., 2020) 作为局部解释器。然而,我们修改了将加权图离散化为一组不相连的主题的过程。事实上,Luo 等人 (2020)将他们的分析限制在包含真实主题的图表上,并建议将前 k 个边缘作为可视化目的的经验法则。对于最初评估 PGExplainer 的致突变性,我们简单地选择了阈值 θ,该阈值 θ 可以最大化所有图(包括那些不包含真实主题的图)上局部解释器的 F1 分数。对于新颖的数据集 BAMultiShapes 和 HIN,我们采用了动态算法来选择 θ,不需要任何关于真实主题的先验知识。该算法类似于肘法,即对于每个局部解释按降序排列权重,并选择与前一个权重至少相差 40% 的第一个权重作为阈值。我们认为,局部解释器的阈值选择是使局部解释器可操作的一个基本问题,但它常常被忽视,以支持基于真实主题选择 k 的 top-k 选择。

     GLGExplainer:我们将局部解释嵌入器 h 实现为除 HIN 之外的每个数据集的 2 层 GIN(Xu 等人,2018)网络,为此我们找到了 GATV2(Brody 等人,2021)来提供更好的性能,因为注意机制允许网络考虑邻近个体类型的相对重要性。所有层均由 20 个隐藏单元组成,后跟最大、平均值和求和图池的非线性组合。我们将 BAMultiShapes、诱变性和 HIN 的原型数量 m 分别设置为 6、2 和 4(有关如何推断这些数字的分析,请参阅第 4.4 节),将维度 d 保持为 10。我们使用 ADAM 优化器进行训练提前停止,嵌入和原型学习组件的学习率为 1e−3,E-LEN 的学习率为 5e−4。批量大小设置为128,聚焦参数γ设置为2,辅助损失系数λ1和λ2分别设置为0.09和0.00099。

      E-LEN 由输入熵层 (Rm → R10)、隐藏层 (R10 → R5) 和具有 LeakyReLU 激活函数的输出层组成。我们关闭了鼓励稀疏使用 E-LEN 中概念的注意力机制,因为 GLGExplainer 的端到端架构已经促进了预测概念的出现,并且 E-LEN 之前的离散化步骤鼓励每个概念激活向量崩溃在一个单一的概念上。所有这些超参数都是通过训练集的交叉验证来识别的。

5.3 评估指标

      为了显示我们提出的方法的稳健性,我们根据以下三个指标评估了 GLGExplainer,

      i) FIDELITY,它表示 E-LEN 在匹配模型 f 的预测方面的准确性来解释;

      ii)准确性,表示公式与图的真实标签匹配的准确性;

      iii) 概念纯度,它是为每个聚类独立计算的,并衡量嵌入在聚类局部解释方面的效果。

         Table1    由熵层提取的原始公式及其测试准确性。每个公式都被重写以仅保留正数

5.4  EXPERIMENTAL RESULTS

    在本节中,我们将通过实验结果来回答上面定义的研究问题。表 1 展示了熵层提取的原始公式,为了提高可读性,我们从子句中删除了否定文字。   这意味着对于公式中的每个子句,缺失的概念都被隐式否定。

     在检查每个簇的代表元素后,这些公式可以进一步重写为更易于人类理解的格式,如图 2 所示,其中对于每个原型 pj ,局部解释  \overline{G}使得 \overline{G} =  argmax_{\overline{G'}\in D}d(p_{j},h(\overline{G'}))被报告。

      每个概念的代表性元素。为了完整起见,在附录中,我们为每个概念报告了五个随机实例。

     由此产生的全局解释如图 3 所示,其中我们对 XGNN(Yuan 等人,2020)生成的全局解释进行了定性比较,XGNN 是 GNN 全局解释的唯一可用竞争对手。

      注:GLGExplainer(我们的)和 XGNN 的全局解释。对于 BAMultiShapes 的 0 类,XGNN 无法生成置信度 ≥ 0.5 的图形。请注意,对于每个子句,缺失的概念都被隐式否定。

      最后,表 2 显示了第 4.3 节中所述的三个指标的结果。请注意,XGNN 未显示在表中,因为无法根据这些指标对其进行评估。

       使用不同随机种子运行 5 次,计算出保真度、准确度和概念纯度的平均值和标准差。由于概念纯度是为每个集群独立计算的,因此我们在这里根据验证集报告最佳运行中集群之间的平均值和标准偏差。

      接下来我们来看之前的2个问题。

       Q1:GLGExplainer 能否提取有意义的全局解释?

       GLGExplainer 提取的全局解释的构建块是在概念投影层中学习的图形概念。图2清楚地表明,每个概念都代表了具有特定特征的局部解释,从而达到了创建可解释概念的预期目标。请注意,与概念对应的集群平均而言非常同质(参见表 2 中的概念纯度),并且图中的概念代表是其对应集群中实例的忠实表示。值得注意的是,这种聚类仅基于方程 3 定义的监督而出现,而没有添加特定的监督来根据局部解释的相似性对局部解释进行聚类。这就是图 2 上部 p2 周围混合簇出现的原因,它代表了具有至少两个仅存在于 BAMultiShapes 的第 1 类中的主题的所有局部解释。

      此外,如图 3 所示,GLGExplainer 设法将这些构建块组合成高度可解释的解释。 BAMultiShapes 的解释几乎完全符合真实公式,唯一的区别是所有主题的结合被分配到第 1 类而不是第 0 类。然而,这是由于真实公式与 GNN 之间的差异造成的,这将在问题 2 的答案中讨论。 

     请注意,在提取人类可解释的公式时,混合簇已被重写为其包含的形状的合取。对于Mutagenesis,GLGExplainer 设法恢复众所周知的 NO2 基序作为诱变性指标(0 类)。值得提醒的是,在图 3 中的所有公式中,为了提高可读性,子句中都删除了负数。诱变公式只有两个概念,这意味着 0 类公式实际上代表 NO2 本身 ((NO2 ∧ OTHERS) ∨ (NO2 ∧ Ø OTHERS) ⇐⇒ NO2)。对于 HIN 来说,全球解释符合这样一种普遍看法:护士倾向于与其他护士或患者互动更多,而医生倾向于更频繁地与其他医生(或患者,但比护士互动频率低)。

     与我们的结果相反,XGNN(Yuan et al., 2020)在大多数情况下无法生成与数据集的基本事实或普遍信念相匹配的解释,而在其他情况下则无法生成任何图表。

   Q2:GLGExplainer 能否提取可信的全局解释?

       表 2 中报告的高准确度表明,提取的公式与大多数样本中模型的行为正确匹配,同时是在相当纯粹的概念上定义的,如同表中的概念纯度所示。值得强调的是,GLGExplainer 不仅仅是为数据集的真实标签生成解释,绕过它应该解释的 GNN,而确实捕获了其潜在的预测行为。

      请注意,在 BAMultiShapes 上,训练精度低于测试精度。造成这种训练测试差异的原因在于,GNN 未能将所有三个主题(这在测试集中很少见且从未出现过)的逻辑组成识别为 0 类指标。这一点可以看出通过分解数据中出现的主题的 GNN 准确性(表 3),并观察到具有所有三个主题的组(全部)的准确性恰好为零。非常值得注意的是,GLGExplainer 成功地捕获了 GNN 中的这种异常情况,因为涉及所有三个主题的子句是作为 1 类而不是 0 类公式的一部分来学习的,如图 3 所示。GLGExplainer 解释这种异常行为的能力这是一个有希望的迹象,表明它作为学习 GNN 的诊断工具的潜力。

  表 3:模型在 BAMultiShapes 训练集上解释关于要添加到 BA 基础图中的每种图案组合的准确性。 H、G、W 分别代表 House、Grid 和 Wheel。

      在本节的其余部分中,我们将展示如何通过权衡保真度、概念纯度和稀疏性来轻松推断出对解释的可解释性产生关键影响的原型数量,并且我们提供了一项消融研究来证明原型的重要性离散化技巧。

     原型数量的选择:本节实验中的原型数量是通过选择在验证集上测量的保真度和概念纯度方面达到满意结果的最小 m 来确定的。具体来说,我们的目标是简化 m 值,以符合人类的认知偏见,即倾向于用更简单的解释来解释更复杂的解释(Miller,1956)。表 4 报告了不同的 m 值如何影响保真度和概念纯度。

     离散化技巧的作用:我们进行了一项消融研究,以评估离散化技巧对 GLGExplainer 整体性能的贡献。图 4(左)显示了与禁用该技巧的 GLGExplainer(橙色曲线)相比,GLGExplainer 使用离散化技巧(红色曲线,构造零熵)所实现的概念向量熵的减少。图 4(中)报告了两个变体在训练周期内的保真度。该图显示了离散化技巧在提高提取公式的保真度方面的有效性,这是禁用离散化技巧的两倍多。

       我们推测这种行为的原因是离散化技巧迫使 E-LEN 的隐藏层关注与最接近原型相关的信息,而忽略局部解释的其他位置信息。因此,E-LEN 预测与提取的离散公式更好地一致,并且公式的准确性实际上与 E-LEN 的保真度相匹配,如右图所示。另一方面,没有离散化的GLGExplainer具有较高的保真度,但无法提取高度可信的公式。

     根据这些结果,可以得出结论:GLGExplainer能够提取有意义的全局解释,并且这些解释与模型的预测行为相吻合。因此,GLGExplainer论证了实验的假设,并展示了其在解释GNN模型方面的有效性。

6.CONCLUSION

        我们提出了 GLGExplainer,它是第一个能够生成逻辑公式解释的 GNN 全局解释器,以学习人类可解释的图形概念表示。该方法本质上忠实于数据域,因为它处理由现成的本地解释器提取的本地解释。我们的实验表明,与现有解决方案相反,GLGExplainer 可以忠实地描述模型的预测行为,能够将局部解释聚合成有意义的高级概念,并将它们组合成实现高保真度的公式。 GLGExplainer 甚至设法深入了解模型学到的一些偶尔不正确的规则。我们相信,这种方法可以构成研究 GNN 如何构建预测和调试预测的基础,这可以大大提高人类对这项技术的信任。

        所提出的 GLGExplainer 本质上忠实于数据域,因为它处理本地解释器提供的本地解释。然而,这些本地解释的质量,就特定任务类别的代表性和可区分性而言,对保真度有直接影响。如果生成的概念向量没有表现出任何特定于类的模式,那么 E-LEN 将无法模拟模型的预测来进行解释。尽管这是 GLGExplainer 的潜在限制,但这实际上可以打开使用 Fidelity 作为本地解释质量代理的可能性,而众所周知,这是很难评估的。我们将这项调查留给未来的工作。

7. 启发

这篇论文提出了一个名为GLGExplainer的方法,用于解释图神经网络(GNN)的全局可解释性。论文中的一些有趣观点如下:

1. GLGExplainer方法:GLGExplainer是一种用于提取GNN全局解释的方法。它通过将局部解释嵌入到低维空间中,并使用逻辑组合的方式来生成全局解释。这种方法可以帮助我们理解GNN在图数据上的决策过程。

2. 数据集选择:论文中使用了合成数据集和真实世界数据集进行实验。合成数据集包括了逻辑组合的概念,而真实世界数据集则包括了医院交互网络和分子的突变性。这种数据集选择可以帮助我们评估GLGExplainer在不同类型数据上的性能。

3. 局部解释提取:论文中使用了PGExplainer作为局部解释提取器。通过对加权图进行离散化处理,将其转化为一组不相连的模式。这种方法可以帮助我们理解GNN中每个节点的重要性和贡献。

从这篇论文中,我获得了以下启发:

1. GNN的全局解释:GLGExplainer提供了一种解释GNN全局决策的方法,这对于理解GNN在图数据上的工作原理和决策过程非常有帮助。

2. 数据集选择的重要性:选择合适的数据集可以帮助我们评估和比较不同解释方法的性能。合成数据集和真实世界数据集的结合可以提供更全面的评估结果。

3. 局部解释的重要性:理解GNN中每个节点的重要性和贡献对于解释GNN的决策过程非常重要。通过合适的局部解释提取方法,我们可以更好地理解GNN的工作原理。

4. 阈值选择的挑战:选择合适的阈值对于局部解释的可操作性非常重要。动态算法可以帮助我们更好地选择阈值,使解释更具实际意义。 

8.问题

1.GNN的局部解释是每个节点的重要性和贡献吗?文中如何将局部解释组合成全局解释的?

2. 使用现有的局部解释器(Local Explainer)对数据集中的每个样本提取局部解释,这些局部解释可以理解为一个个对原输入样本子图的解释吗?

           ​​​​​​​     

3. 表格1展示了熵层提取的原始公式,对于这些公式不是太理解(即对于P的含义还不是很懂),这些逻辑公式是如何描述GNN的行为的?

4.实验部分概念纯度(CONCEPT PURITY),这一指标衡量嵌入在聚类局部解释方面的效果,这一指标是如何计算的呢?

5.本方法依赖于局部解释器的输出,那么局部解释器的准确性和可解释性是否会对全局解释的质量有重要影响呢?如果会,又该如何进一步改进局部解释器的性能和可解释性,以提高全局解释的质量呢?

6.在提取逻辑公式时,可能会存在一定的误差或不完整性,导致解释的准确性有所降低,有哪些方法可以减少误差和不完整性?

7.将局部解释(逻辑公式)映射到一些学习到的原型,这些原型代表了高级概念,比较感兴趣这一过程是如何实现的。这些图形概念是如何学习的?

8.对于GNN行为的描述采用逻辑公式,或许可以结合其他解释方法和技术,如可视化和自然语言生成,进一步提高解释的可理解性和可视化效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值