从经济的角度理解MSR,MSE和F统计值

本文探讨了线性回归中的 MSR 和 MSE 指标,它们分别衡量已选自变量与未选自变量对因变量的解释能力。当 F 比率(MSR/MSE)为5时,说明模型中包含的自变量解释力是未包含自变量的五倍,表明所选特征是有效的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下说法均基于线性回归:

  1. MSR=SSR/P-1 表示放在回归里的自变量,平均对因变量解释了多少
  2. MSE=SSE/n-p 表示可以放但是没有放在回归里的自变量,平均对因变量解释多少(因为最多能放n-1个自变量,所以n-p表示可以放但是没放的)
  3. F=MSR/MSE 假设F=5,则说明放在回归里的解释力度是没放的五倍,那么说明我们的挑选是合理的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值