PPO算法在CARLA上的应用

源代码出自:GitHub - idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning: Deep Reinforcement Learning (PPO) in Autonomous Driving (Carla) [from scratch]

使用PPO算法训练agent(train_ppo.py)

1、创建Carla环境

(1)连接Carla服务器和客户端,导入地图,定义天气(connection.py)

(2)环境具体内容定义(environment.py):

        环境类最重要的两个函数是reset()和step()

2、导入agent(agent.py和ppo.py)

agent.py主要定义agent采取什么动作,以及采取某个动作获得什么回报

ppo.py主要定义演员-评论家网络的结构

3、开始训练

(1)设置训练结束条件:timestep < train_timesteps

(2)重置环境并获取观测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值