一、算法原理
(一)多模态数据处理
- 现代应用场景中,数据往往具有多种模态。例如在自动驾驶场景下,有来自摄像头的视觉图像模态、激光雷达的距离信息模态和车载传感器的速度等状态信息模态。MDRL - FA 算法首先对这些不同模态的数据进行预处理。
- 对于视觉图像模态,会使用卷积神经网络(CNN)进行特征提取。CNN 的卷积层可以有效捕捉图像中的局部特征,如边缘、纹理等,池化层则用于减少数据维度,防止过拟合。以自动驾驶为例,CNN 可以提取出道路标志、车辆和行人等关键视觉元素的特征。
- 对于距离信息模态,如激光雷达数据,会将其转换为点云数据格式,然后通过点云处理算法提取物体的位置、形状和距离等特征。这些特征可以帮助智能体(如自动驾驶汽车)感知周围环境的空间布局。
- 对于状态信息模态,如速度、加速度等,会进行归一化处理,使其数值范围在合适的区间内,方便后续的融合和计算。
(二)深度强化学习框架
- 算法采用深度 Q - 网络(DQN)或其变体作为基础的强化学习架构。智能体(agent)在环境(environment)中采取行动(action),环境根据智能体的行动反馈奖励(reward)信号,并更新环境状态。
- 智能体的策略网络(policy network)用于决定采取何种行动。在 MDRL - FA 中,策略网络的输入是经过融合的多模态数据特征。通过反向传播算法,根据奖励信号来更新策略网络的参数,使得智能体能够学习到最优的策略。
- 目标网络(target network)用于稳定学习过程。它的结构与策略网络相似,但更新频率较低。目标网络用于计算目标 Q 值,策略网络则逼近这个目标 Q 值,通过不断缩小两者之间的差距来优化策略。
(三)模态融合机制
- 早期融合:在数据预处理阶段,将不同模态的数据特征进行拼接(concatenate)。例如,将经过 CNN 提取的图像特征向量、点云数据特征向量和归一化后的状态信息向量拼接成一个更长的向量作为策略网络的输入。这种

最低0.47元/天 解锁文章
917

被折叠的 条评论
为什么被折叠?



